首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four kinds of magnesium hydroxide (Mg(OH)2) with different particle sizes are chosen and mixed with ethylene vinyl acetate copolymer (EVA) to investigate the effect of particle size on the flame retardancy of composites, which is evaluated by limiting oxygen index (LOI) testing, horizontal fire testing, and cone calorimeter. When Mg(OH)2 filling level changes from 35 to 70 wt %, the composites filled with nano‐Mg(OH)2 do not always possess the best flame retardancy, and among the composites filled with micro‐Mg(OH)2, the composites filled with 800 mesh Mg(OH)2 show the best flame retardancy; however, the composites filled with 1250 mesh presents the worst one. So the effect of particle size on the flame retardancy of micro‐Mg(OH)2‐filled EVA is not linear as expected. All the differences are thought to result from both particle size effect and distributive dispersion level of Mg(OH)2. To prepare the composites with better mechanical properties and flame retardancy, authors suggested that Mg(OH)2 of smaller size should be chosen as flame retardant, and good dispersion of Mg(OH)2 particles also should be assured. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 4461–4469, 2006  相似文献   

2.
Poly(butylene succinate)/magnesium hydroxide (PBS/Mg(OH)2) composites were prepared by melt compounding to investigate the effect of particle size on the flame retardancy of PBS. Their flammability properties were investigated by limiting oxygen index, UL‐94, and cone calorimeter tests, which suggested that the medium‐sized Mg(OH)2‐5 µm displayed the best flame retardancy. The residual char structure were analyzed and indicated that Mg(OH)2‐5 µm could form a better protective layer than other sized particles, leading to the better flame retardancy to PBS. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

3.
The effect of the silicone oil content on the tensile properties and micromechanical deformation of high‐density polyethylene/Al(OH)3 composites was studied. With an increase in the silicone oil content, the elongation at break and notched Izod impact strength of the composites increased, and the local debonding deformation gradually transformed into homogeneous debonding deformation. A model characterizing the micromechanical deformation process was examined. The increase in the silicone oil content decreased the interaction between the filler particles and the high‐density polyethylene matrix and increased the extension speed of the debonded region, which led to the changes in the tensile properties and micromechanical deformation. A good explanation for the tensile properties and micromechanical deformation was obtained through the model. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1207–1218, 2002  相似文献   

4.
The tensile behavior of high‐density polyethylene (HDPE), polypropylene (PP), and linear low‐density polyethylene composites containing a titanate coupling agent and silicone‐oil‐treated magnesium hydroxide [Mg(OH)2] was studied. The increase in the extent of the ultimate elongation of the composites was affected by the yield stress and the strain‐hardening tendency of the polymer matrix in the composites. Ethylene–propylene–diene rubber and octane–ethylene copolymer were introduced to adjust the yield stress of PP and HDPE. Although the ultimate elongation of PP/elastomer and HDPE/elastomer blends was higher than that of virgin PP or HDPE, the ultimate elongation of the filled composites dropped at a high content of Mg(OH)2. Scanning electron microscopy showed that the difference in the uniformity of the interface exfoliation decreased with the yield stress of the matrix. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3248–3255, 2003  相似文献   

5.
The effects of elastomer type on the morphology, flammability, and mechanical properties of high‐impact polystyrene (HIPS)/polystyrene (PS)‐encapsulated magnesium hydroxide (MH) were investigated. The ternary composites were characterized by cone calorimetry, mechanical testing, and scanning electron microscopy. Morphology was controlled with poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS) triblock copolymer or the corresponding maleinated poly[styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene] (SEBS‐g‐MA). The HIPS/SEBS/PS‐encapsulated MH composites exhibited separation of the filler and elastomer, whereas the HIPS/SEBS‐g‐MA/PS‐encapsulated MH composites exhibited encapsulation of the filler by SEBS‐g‐MA. The flame‐retardant and mechanical properties of the ternary composites were strongly dependent on microstructure. The composites with an encapsulation structure showed higher flame‐retardant properties than those with a separation structure at the optimum use level of SEBS‐g‐MA. Furthermore, the composites with a separation structure showed a higher modulus and impact strength than those with an encapsulation structure. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci 2008  相似文献   

6.
A comparative study was performed of fly ash and nano‐CaCO3 as fillers in polybutadiene rubber with 0, 4, 8 and 12% fly ash and nano‐CaCO3. Uniform sheets were prepared of well‐compounded rubber. Nano‐CaCO3 was synthesized by in situ deposition. The CaCO3 nanoparticles as reinforcing agents improved the tensile strength more than 50% than fly ash, and the toughness and hardness also increased significantly. Up to a 75% reduction in flammability and a 100% improvement in the tear strength were observed with nano‐CaCO3.© 2005 Wiley Periodicals, Inc. J Appl Polym Sci 96: 6–9, 2005  相似文献   

7.
It has been found that nano‐ or microsized inorganic particles in general enhance the tribological properties of polymer materials. In the present study, 5 vol % nano‐TiO2 or micro‐CaSiO3 was introduced into a polyetherimide (PEI) matrix composite, which was filled additionally with short carbon fibers (SCF) and graphite flakes. The influence of these inorganic particles on the sliding behavior was investigated with a pin‐on‐disc testing rig at room temperature and 150°C. Experimental results showed that both particles could reduce the wear rate and the frictional coefficient (μ) of the PEI composites under the applied testing conditions. At room temperature, the microparticles‐filled composites exhibited a lower wear rate and μ, while the nano‐TiO2‐filled composites possessed the lowest wear rate and μ at elevated temperature. Enhancement in tribological properties with the addition of the nano‐particles was attributed to the formation of transfer layers on both sliding surfaces together with the reinforcing effect. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 101: 1678–1686, 2006  相似文献   

8.
Polyurethane‐clay nanocomposite elastomers were synthesized using polyol‐clay blends with different levels of dispersion, which affected the final elastomer microstructure. A PU‐clay microcomposite elastomer containing partially dispersed clay showed poorer mechanical and similar fire properties to the unmodified polyurethane. More complete dispersion of the clay into the polyol led to an exfoliated structure in the final elastomer. This showed a higher modulus and kept a viscoelastic behavior to higher temperature than the pristine PU. The enhancement of mechanical and thermal properties in the nanocomposite elastomer can be attributed to the degree of clay exfoliation, and this also prevented dripping during the UL 94 fire test. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

9.
The flammability of montmorillonite (MMT)/SBR nanocomposites, prepared by the technique of cocoagulating rubber latex and clay aqueous suspension, was investigated. Flammability studies, performed on the cone calorimeter, showed that the maximum heat release rate (HRR) of SBR decreased from 1987 to 1442 kw/m2 with the introduction of nanoclay (20 phr). This nanocomposite had the lowest mass loss rate and the largest amount of char upon combustion compared with conventional SBR composites with the same clay loading and pure SBR. The permeability properties of MMT/SBR composites were also measured. It was deduced that the lowered permeability was responsible for the reduced mass loss rate and hence the lower HRR. Unfortunately, the oxygen index (OI) of the nanocomposites was not as high as expected. Combination of Mg(OH)2 and clay was effective for the improvement of both mechanical properties and OI. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 97: 844–849, 2005  相似文献   

10.
Nanoparticles based on Al(III) and Zr(IV) melamine phosphate and sulfate, respectively, are prepared. Cone calorimeter measurements reveal that compared to an unfilled polyacrylate matrix the polyacrylate‐based nanocomposites containing the novel nanoparticles display significantly improved flame‐retardant properties as evidenced by the corresponding values for the peak heat release rate, the time‐to‐ignition, the values for the peak rate of heat release, the total heat evolved, the time to the CO peak and the CO yield. Concomitantly, the mechanical properties of the acrylate‐based composite coatings, i.e., the Martens and surface hardness, can also be significantly improved.

  相似文献   


11.
The role of rigid particle size in the deformation and fracture behavior of filled semicrystalline polymer was investigated with systems based on polypropylene (PP) and model rigid fillers [glass beads, Al(OH)3]. The regularities of the influence of particle content and size on the microdeformation mechanisms and fracture toughness of the composites at low and high loading rates were found. The existence of the optimal particle size for fixed filler content promoting both maximum ultimate elongation of the composite at the tensile and maximum toughness at impact test was shown. The decrease of the toughening effect with both decreasing and increasing particle size regarding the optimal one was explained by dual role of particle size, correspondingly as either “adhesive” or “geometric” factors of fracture. The adhesive factor is due by the increase of debonding stress with the particle size decrease and the voiding difficulty resulting in the restriction of plastic flow. The geometric factor consists in the dramatic decrease of the composite strength at break if the void size exceeds the critical size of defect (for a given matrix) at which the crack initiation occurs. The analysis of the filled polymer toughness dependencies upon the particle size revealed that a capacity of rigid particles for the energy dissipation at the high loading rate depends on two factors: (i) ability of the dispersed particles to detach from matrix and to initiate the matrix local shear yielding at the vicinity of the voids and (ii) the size of the voids forming. Based on the findings it was concluded that the optimal minimal rigid particle size for the polymer toughening should answer the two main requirements: (i) to be smaller than the size of defect dangerous for polymer fracture and (ii) to have low debonding stress (essentially lower compared to the polymer matrix yield stress). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 1917–1926, 2004  相似文献   

12.
In this study, the effects of thermally conductive filler type (α‐Al2O3, SiC), volume fraction of the filler, and filler particle size distribution on the thermal conductivity and viscosity of room‐temperature‐vulcanized (RTV) silicone rubber and silicone grease were investigated. We were interested to find that silicone grease (or the RTV silicone rubber) had a maximum thermal conductivity (~1.48 W/mK) and a minimum viscosity (~3.4 × 104 mPa s), with a definite total volume fraction of the filler (0.55) when the distribution of filler sizes (the number ratio of two different particles sizes, i.e., 0.8 and 6 μm) was 600–700. We were able to increase the thermal conductivity of the RTV silicone rubber and silicone grease beyond 2 W/mK by increasing the total volume fraction of the filler with adequate filler size distributions. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 2397–2399, 2003  相似文献   

13.
Different particle size of expandable graphite (EG) were incorporated into water‐blown semi‐rigid polyurethane foams (SPFs), which acted as the fire shield, in order to enhance the fire retardant properties. In this study, the particle size of EG was systematically varied from 70 µm to 960 µm. The effect of EG particle size on the density, mechanical properties, and thermal stability of SPFs was also investigated. Results showed that EG with smaller particle size showed almost no effect on the fire retardant properties of SPFs while the larger particle size of EG could effectively enhance it. It was observed that the flame retardancy of the composite improved with the increase of EG size which was attribute to the formation and densification of isolation layer with the increase in volume of expanded graphite. Limiting oxygen index (LOI) value of EG/SPF composites increased linearly by two steps with the increase in EG particle size. Horizontal burning test confirmed the above conclusion. Thermogravimetric analysis (TGA) indicated that EG particles and its size exhibited minor effect on the thermal stability of the SPF composites. Moreover, SPF filled with medium particle size of EG (about 400 µm) exhibited a poor compression performance compared with the others. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39885.  相似文献   

14.
A synergistic effect on flame retardancy was found when acrylonitrile butadiene ultra-fine fully vulcanized powdered rubber (NB-UFPR) was incorporated into ethylene vinyl acetate/nano-magnesium hydroxide (EVA/nano-MH) composite by a new process. The fire performance of EVA and EVA composites was compared in this communication by cone calorimeter test (CCT). The CCT data indicated that the addition of NB-UFPR in EVA/nano-MH system not only reduced the heat release rate, but also prolonged the ignition time of the composite, which is contrary to the effect of NB-UFPR when it was added alone in EVA polymer. Thermogravimetric analysis revealed that nano-MH accelerated the loss of acetic acid, but NB-UFPR assisted to reduce nano-MH's accelerating effect. FTIR spectra showed a new absorption at 3374 cm−1 in the blends of EVA/NB-UFPR and EVA/NB-UFPR/nano-MH.  相似文献   

15.
Some rigid polyurethane foam (RPUF) composites modified with microencapsulated red phosphorus (MRP), magnesium hydrate (Mg(OH)2), glass fiber (GF), and hollow glass bead (HGB) were prepared. The influence of the MRP, Mg(OH)2, GF, and HGB on the flame‐retardant, combustion, and mechanical properties of the filled RPUF composites was investigated. The results showed that the flame‐retardant and the combustion properties of the composites were obviously improved, the limiting oxygen index, half burning time and the residual mass/original mass ratio increased with increasing MRP/Mg(OH)2 weight fraction, especially in case of MRP/Mg(OH)2 weight fraction of 8 wt %; the carbon monoxide (CO) concentration decreased with increasing MRP/Mg(OH)2 weight fraction, When the composites were loaded appreciate content of the HGB and the GF, the maximum torque and compressive strength of the composites were improved. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46551.  相似文献   

16.
Polypropylene (PP) composites filled with wood flour (WF) were prepared with a twin‐screw extruder and an injection‐molding machine. Three types of ecologically friendly flame retardants (FRs) based on ammonium polyphosphate were used to improve the FR properties of the composites. The flame retardancy of the PP/WF composites was characterized with thermogravimetric analysis (TGA), vertical burn testing (UL94‐V), and limiting oxygen index (LOI) measurements. The TGA data showed that all three types of FRs could enhance the thermal stability of the PP/WF/FR systems at high temperatures and effectively increase the char residue formation. The FRs could effectively reduce the flammability of the PP/WF/FR composites by achieving V‐0 UL94‐V classification. The increased LOI also showed that the flammability of the PP/WF/FR composites was reduced with the addition of FRs. The mechanical property study revealed that, with the incorporation of FRs, the tensile strength and flexural strength were decreased, but the tensile and flexural moduli were increased in all cases. The presence of maleic anhydride grafted polypropylene (MAPP) resulted in an improvement of the filler–matrix bonding between the WF/intumescent FR and PP, and this consequently enhanced the overall mechanical properties of the composites. Morphological studies carried out with scanning electron microscopy revealed clear evidence that the adhesion at the interfacial region was enhanced with the addition of MAPP to the PP/WF/FR composites. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

17.
Polymeric materials are used extensively, but their applications are limited because many of them are flammable. Therefore ways to make them flame retardant have received much attention. In this work, polypropylene (PP) was used as the matrix resin, aluminium hydroxide (Al(OH)3) and magnesium hydroxide (Mg(OH)2) as flame‐retardant additives and zinc borate (ZB) as a flame‐retardant synergist. PP/Al(OH)3/Mg(OH)2 and PP/Al(OH)3/Mg(OH)2/ZB flame‐retardant composites were prepared with a twin‐screw extruder. The flame‐retardant properties, i.e. oxygen index (OI), burning velocity and smoke density, of the composites were measured. The results showed that OI increased with an increase of the filler content and decreased with an increase of the filler particle diameter. The burning velocity decreased with an increase of the filler content, while it first increased and then decreased with an increase of the filler particle diameter. The smoke density decreased with an increase of the filler content and increased with an increase of the filler particle diameter. There was a flame‐retardant synergy between Al(OH)3/Mg(OH)2 and ZB in the composites, and the smoke suppression effect was marked when ZB was added. Copyright © 2009 Society of Chemical Industry  相似文献   

18.
Size and curvature of filler particles affect dynamics of polymer chains in composites. In this work, effects of filler particle size, in two scales of nano- and micro-meters, on dynamics of rubbery chains and frictional properties of composites were studied. Surface modification of nano- and micro-fumed silica by grafting low molecular weight hydroxyl-terminated polybutadiene (HTPB) guaranteed similar surface energy for fillers as measured by their surface tension. Nano- and micro-composites of styrene butadiene rubber were prepared by solvent assisted mixing and progressively increasing volume fraction of fillers. Achievement of nano and micro-composites was confirmed by the scanning electron microscopy. Effect of silica aggregate size on the dynamics of rubber chains was measured by dynamic-mechanical-thermal analyzer and compared through calculation of the activation energy for mobilization of slow-dynamic chains in the rubbery region. It was shown that nano-silica immobilizes the rubber chains more than micro-silica even at equal total interfacial area between filler aggregates and rubber matrix, especially above the percolation limit. Similar trend was seen for the coefficient of friction of composites against rough surfaces, showing the strong effect of chain dynamics on friction properties of rubber vulcanizates.  相似文献   

19.
High‐abrasion furnace black (HAF, grade N330)–filled powdered styrene butadiene rubber [P(SBR/HAF)] was prepared and the particle size distribution, mixing behavior in a laboratory mixer, and mechanical properties of P(SBR/HAF) were studied. A carbon black–rubber latex coagulation method was developed for preparing carbon black–filled free‐flowing, noncontact staining SBR powders, with particle diameter less than 0.9 mm, under the following conditions: carbon black content > 40 phr, emulsifier/carbon black ratio > 0.02, and coating resin content > 2.5 phr. Over the experimental range, the mixing torque τα of P(SBR/HAF) was not as sensitive to carbon black content and mixing temperature as that of HAF‐filled bale SBR (SBR/HAF), whereas the temperature build‐up ΔT showed little dependency on carbon black content. Compared with SBR/HAF, P(SBR/HAF) showed a 20–30% mixing energy reduction with high carbon black content (>30 phr), which confers to powdered SBR good prospects for internal mixing. Carbon black and the rubber matrix formed a macroscopic homogenization in P(SBR/HAF), and the incorporation step is not obvious in the internal mixing processing results in these special mixing behaviors of P(SBR/HAF). A novel mixing model of carbon black–filled powdered rubber, during the mixing process in an internal mixer, was proposed based on the special mixing behaviors. P(SBR/HAF) vulcanizate showed better mechanical properties than those of SBR/HAF, dependent primarily on the absence of free carbon black and a fine dispersion of filler on the rubber matrix attributed to the proper preparation conditions of noncontact staining carbon black–filled powdered SBR. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 94: 2494–2508, 2004  相似文献   

20.
The flame‐retardant properties of asphalt for some building applications are very important. This article is mainly focused on the influence of particle size and content of magnesium hydroxide (MH) on the flame‐retardant properties of asphalt. The limit oxygen index and cone calorimeter results indicate that as the MH content and mesh number increase, the flame‐retardant properties of MH‐filled flame‐retardant asphalt show a rising trend. But the role of particle size in smoke suppression is not obvious. Several tests confirm that the dispersion of the MH have some influence on the flame‐retarding effect of asphalt. The 3000 mesh MH for the preparation of flame‐retardant asphalt shows optimal performance. The experimental data show that the softening point of flame‐retardant asphalt increases, but the ductility and penetration decrease with increasing MH content. MH affects the asphalt viscosity, but not affects the adhesion of the asphalt to gravel. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号