首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
Clay minerals often contain redox-active structural iron that participates in electron transfer reactions with environmental pollutants, bacteria, and biological nutrients. Measuring the redox properties of structural Fe in clay minerals using electrochemical approaches, however, has proven to be difficult due to a lack of reactivity between clay minerals and electrodes. Here, we overcome this limitation by using one-electron-transfer mediating compounds to facilitate electron transfer between structural Fe in clay minerals and a vitreous carbon working electrode in an electrochemical cell. Using this approach, the electron-accepting and -donating capacities (Q(EAC) and Q(EDC)) were quantified at applied potentials (E(H)) of -0.60 V and +0.61 V (vs SHE), respectively, for four natural Fe-bearing smectites (i.e., SWa-1, SWy-2, NAu-1, and NAu-2) having different total Fe contents (Fe(total) = 2.3 to 21.2 wt % Fe) and varied initial Fe(2+)/Fe(total) states. For every SWa-1 and SWy-2 sample, all the structural Fe was redox-active over the tested E(H) range, demonstrating reliable quantification of Fe content and redox state. Yet for NAu-1 and NAu-2, a significant fraction of the structural Fe was redox-inactive, which was attributed to Fe-rich smectites requiring more extreme E(H)-values to achieve complete Fe reduction and/or oxidation. The Q(EAC) and Q(EDC) values provided here can be used as benchmarks in future studies examining the extent of reduction and oxidation of Fe-bearing smectites.  相似文献   

2.
The binding of mercury(II) to two peats from Florida Everglades sites with different rates of mercury methylation was measured at pH 6.0 and 0.01 M ionic strength. The mercury(II) sorption isotherms, measured over a total mercury(II) range of 10(-7.4) to 10(-3.7) M, showed the competition for mercury(II) between the peat and dissolved organic matter released from the peat and the existence of strong and weak binding sites for mercury(II). Binding was portrayed by a model accounting for strong and weak sites on both the peat and the released DOM. The conditional binding constants (for which the ligand concentration was set as the concentration of reduced sulfur in the organic matter as measured by X-ray absorption near-edge structure spectroscopy) determined for the strong sites on the two peats were similar (Kpeat,s = 10(21.8 +/- 0.1) and 10(22.0 +/- 0.1) M-1), but less than those determined for the DOM strong sites (Kdom,s = 10(22.8 +/- 0.1) and 10(23.2 +/- 0.1) M-1), resulting in mercury(II) binding by the DOM at low mercury(II) concentrations. The magnitude of the strong site binding constant is indicative of mercury(II) interaction with organic thiol functional groups. The conditional binding constants determined for the weak peat sites (Kpeat,w = 10(11.5 +/- 0.1) and 10(11.8 +/- 0.1) M-1) and weak DOM sites (Kdom,w = 10(8.7 +/- 3.0) and 10(7.3 +/- 4.5) M-1) were indicative of mercury(II) interaction with carboxyl and phenol functional groups.  相似文献   

3.
The influence of hyporheic zone interactions on the redox state of fulvic acids and other redox active species was investigated in an alpine stream and adjacent wetland, which is a more reducing environment. A tracer injection experiment using bromide (Br-) was conducted in the stream system. Simulations with a transport model showed that rates of exchange between the stream and hyporheic zone were rapid (alpha approximately 10(-3) s(-1)). Parallel factor analysis of fluorescence spectra was used to quantifythe redox state of dissolved fulvic acids. The rate coefficient for oxidation of reduced fulvic acids (lambda = 6.5 x 10(-3) s(-1)) in the stream indicates that electron-transfer reactions occur over short time scales. The rate coefficients for decay of ammonium (lambda = 1.2 x 10(-3) s(-1)) and production of nitrate (lambda = -1.0 x 10(-3) s(-1)) were opposite in sign but almost equal in magnitude. Our results suggest that fulvic acids are involved in rapid electron-transfer processes in and near the stream channel and may be important in determining ecological energy flow at the catchment scale.  相似文献   

4.
The viability of utilizing Reclaimed Limestone Residual RLR (Modified Steel Slag) to remove hexavalent chromium Cr(VI) from the aqueous phase was investigated. A physical characterization of RLR showed that it is composed of various minerals some of which can reduce and others adsorb Cr(VI). Preliminary results showed that RLR significantly reduced the concentration of Cr(VI) from the aqueous phase. Adsorption competition tests with orthophosphate (HP04(2-)) and sulfate (SO4(2-)) showed that Cr(VI) was still effectively reduced from solution regardless of the competing anions present. Kinetic tests based on the relationship d[Cr(VI)]/dt = kCr[RLR]alpha[Cr(VI)]beta showed that under initially neutral to basic conditions kCr = 3.45+/-(0.25) x 10(-4) mg0.4 L(-0.4) h(-1), alpha = 0.9, and beta = -0.3, while under initially acidic conditions kCr = 5.65+/-(1.055) x 10(-1) mg(-0.4) L0.4 h(-1), alpha = 2.2, and beta = -0.8. Stirred batch tests with RLR in deionized water showed significant drops in the redox potential (Eh), and in the presence of oxygen Eh values dropped to between 50 and 100 mV while in the absence of oxygen Eh values as low as -200 mV were observed. These results lead to the conclusion that redox mechanisms were responsible for the reduction of hexavalent chromium by RLR.  相似文献   

5.
Pulse radiolysis experiments were conducted on dissolved organic matter (DOM) samples isolated as hydrophobic and hydrophilic acids and neutrals from different sources (i.e., stream, lake, wastewater treatment plant). Absolute bimolecular reaction rate constants for the reaction of hydroxyl radicals (*OH) with DOM (k*(OH), DOM) were determined. k*(OH, DOM) values are expressed as moles of carbon. Based on direct measurement of transient DOM radicals (DOM*) and competition kinetic techniques, both using pulse radiolysis, the k*(OH, DOM) value for a standard fulvic acid from the Suwannee River purchased from the International Humic Substances Society was (1.60 +/- 0.24) x 10(8) M(-1) s(-1). Both pulse radiolysis methods yielded comparable k*(OH, DOM) values. The k*(OH, DOM) values for the seven DOM isolates from different sources ranged from 1.39 x 10(8) M(-1) s(-1) to 4.53 x 10(8) M(-1) s(-1), and averaged 2.23 x 108 M(-1) s(-1) (equivalent to 1.9 x 10(4) (mgC/L)(-1) s(-1)). These values represent the first direct measurements of k*(OH, DOM,) and they compare well with literature values obtained via competition kinetic techniques during ozone or ultraviolet irradiation experiments. More polar, lower-molecular-weight DOM isolates from wastewater have higher k*(OH, DOM) values. In addition, the formation (microsecond time scale) and decay (millisecond time scale) of DOM* transients were observed for the first time. DOM* from hydrophobic acids exhibited broader absorbance spectra than transphilic acids, while wastewater DOM isolates had narrower DOM* spectra more skewed toward shorter wavelengths than did DOM* spectra for hydrophobic acids.  相似文献   

6.
A sampling and measuring device was set up to measure continuously the pH and the redox potential (Eh) of ruminal content in absence of any gaseous contamination (method 1). It was compared with a conventional suction device in which no precaution was taken to prevent air from coming into contact with the surface of collected samples (method 2). Two fistulated dry cows were used and fed a total mixed ration. Redox potential and pH measurements were performed repeatedly on collected samples using these 2 methods during a 9-h period; each period started 1 h before feeding. The partial pressure of oxygen (log fO2) was calculated from Nernst's equation using pH and Eh values. Results indicated that pH, Eh, and log f(O2) were affected by sampling method. In method 1, pH values ranged from 6.7 to 6.37 and Eh from -173.5 to -216.8 mV. In method 2, pH and Eh values varied, respectively, from 6.93 to 6.49 and from -111.3 to -139.5 mV. The partial pressure of oxygen was 10(6) times lower in samples that were continuously collected than in hand-samples. As a result, method 1 could make accurate measurements of pH and Eh of ruminal content.  相似文献   

7.
Hydroxyl radical formation rates, steady-state concentration, and overall scavenging rate constant were measured by irradiation of surface lake water samples from Piedmont (NW Italy) and nitrate-rich groundwater samples from Moldova (NE Romania). Dissolved organic matter (DOM) was the main source and sink of *OH upon lake water irradiation, with [*OH] being independent of DOM amount. Water oxidation by photoexcited DOM is a likely *OH source in the presence of very low levels of nitrate and dissolved iron. Under different circumstances it is not possible to exclude other processes, e.g., DOM-enhanced photo-Fenton reactions. Under the hypotheses of no interaction and absence of mutual screening of radiation, nitrate would prevail over DOM as *OH source for a NO3-/DOM ratio higher than 3.3 x 10(-5) (mol NO3-) (mg C)(-1), DOM prevailing for lower values. Substantial DOM photolability was observed upon irradiation of nitrate-rich groundwater, mainly due to the elevated *OH generation rate. For the first time to our knowledge, evidence was also obtained of the photoformation of potentially toxic and/or mutagenic nitroaromatic compounds upon irradiation of natural lake water and groundwater samples, proportionally to the nitrate levels.  相似文献   

8.
The binding of Hg(II) to dissolved organic matter (DOM; hydrophobic acids isolated from the Florida Everglades by XAD-8 resin) was measured at a wide range of Hg-to-DOM concentration ratios using an equilibrium dialysis ligand exchange method. Conditional distribution coefficients (K(DOM)') determined by this method were strongly affected by the Hg/DOM concentration ratio. At Hg/DOM ratios below approximately 1 microg of Hg/mg of DOM, we observed very strong interactions (K(DOM)' = 10(23.2+/-1.0) L kg(-1) at pH = 7.0 and I = 0.1), indicative of mercury-thiol bonds. Hg/DOM ratios above approximately 10 microg of Hg/mg of DOM, as used in most studies that have determined Hg-DOM binding constants, gave much lower K(DOM)' values (10(10.7+/-1.0) L kg(-1) at pH = 4.9-5.6 and I = 0.1), consistent with Hg binding mainly to oxygen functional groups. These results suggest that the binding of Hg to DOM under natural conditions (very low Hg/DOM ratios) is controlled by a small fraction of DOM molecules containing a reactive thiol functional group. Therefore, Hg/DOM distribution coefficients used for modeling the biogeochemical behavior of Hg in natural systems need to be determined at low Hg/DOM ratios.  相似文献   

9.
The spectroscopic and redox properties of iron(lll) protoporphyrin chloride (hemin) and cobalt(lll) meso-tetra-(4-carboxyphenyl) porphyrin chloride (CoTCP) were quantified in fluid solution and when anchored to mesoporous nanocrystalline TiO2 thin films. Surface binding was well-described by the Langmuir adsorption isotherm model from which adduct formation constants of 10(5) M(-1) and limiting surface coverages of 10(-8) mol/cm2 were abstracted. In acetonitrile and dimethyl sulfoxide electrolytes, TiO2 binding was found to induce a substantial negative shift in the M(III/II) formal reduction potentials. In DMSO electrolyte, the Co(III/II) and Fe(III/II) potentials were -559 and -727 mV versus ferrocenium/ferrocene (Fc+/Fc) and shifted to -782 and -1063 mV, respectively, after surface binding. The Bronsted acidity of the TiO2 surface was found to correlate with the measured reduction potentials. For TiO2 pretreated with aqueous solutions from pH 4-9, the Co(III/II) potential showed a -66 mV/pH unit change, while the Fe(llI/II) potential of hemin changed by -40 mV/pH from pH 1 to 14. Spectroelectrochemical data gave isosbestic, reversible spectral changes in the visible region assigned to M(III/II) redox chemistry with lambda(iso) = 410, 460, 530, 545, 568, and 593 nm for CoTCP/TiO2 and lambda(iso) = 408, 441, 500, 576, and 643 nm for hemin/TiO2. In aqueous solution, the CoTCP reduction potentials were also found to be pH dependent upon surface binding, with CoTCP = -583 mV and CoTCP/TiO2 = -685 mV versus Fc+/Fc at pH 6. For CoTCP/TiO2, the aqueous pH dependence of the potentials was -52 mV/pH. The rate constant for heme/TiO2 reduction of CCl4 increased from 3.9 +/- 0.7 x 10(-4) to 2.0 +/- 0.1 x 10(-3) s(-1) when the pH was raised from 4 to 8.  相似文献   

10.
向宗府 《酿酒》2007,34(4):83-85
窖泥氧化还原电位(Eh值)决定着窖泥中铁存在形态.当窖泥处于中度还原状态时(Eh:0~200 my),活性铁含量最高,也最易出现老化现象;当窖泥处于强度还原状态时(Eh<0my),Fe2 转变为沉淀铁(FeS)老窖形成.通过人为控制条件,可促进窖泥微生物活动,加速新窖还原化进程,从而促成"百年老窖"形成.  相似文献   

11.
Green rusts, ferrous-ferric iron oxides, occur in many anaerobic soils and sediments and are highly reactive, making them important phases impacting the fate and transport of environmental contaminants. Despite their potential importance in environmental settings, reactions involving green rusts remain rather poorly described. Chromate is a widespread contaminant having deleterious impacts on plant and animal health; its fate may in part be controlled by green rust. Here we examine chromate reduction by a series of green rust phases and resolve the reaction kinetics at pH 7. The overall kinetics of the reactions are well described by the expression d[Cr(VI)]/dt = -k[Cr(VI)][GR], and this model was successfully used to predict rates of reaction at varying chromium concentrations. The rates of reduction are controlled by the concentration of ferrous iron, surface area, and chemical structure of the green rust including layer spacing. On a mass basis, green rust (GR) chloride is the most rapid reductant of Cr(VI) followed by GRCO3 and GRSO4, with pseudo-first-order rate coefficients (k(obs)) (with respect to Cr(VI) concentration) ranging from 1.22 x 10(-3) to 3.7 x 10(-2) s(-1). Chromium(III)-substituted magnetite and lepidocrocite were identified as the major oxidation products. The nature of the oxidation products appears to be independent of the anionic class of green rust, but their respective concentrations display a dependence on the initial GR. The mole fraction of Fe(III) in the Cr(x),Fe(1-x)(OH)3 x nH2O reaction product ranged from 17% to 68%, leading to a highly stabilized (low solubility) phase.  相似文献   

12.
Algae in waters often bring about influence in drinking water supplies. In this study, an electrochemical tube employing titanium coated with RuO2 as anode was constructed for inactivation of cyanobacteria (often called bluegreen algae) Microcystis aeruginosa. Suspensions containing M. aeruginosa (2-4 x 10(9) L(-1)) were exposed to current densities ranging from 1 to 10 mA cm(-2) in a detention time of 52 min. The variations of cell density, chlorophyll-a, optical density, pH, and conductivity were examined during the treatment. After 3.5 min the population of M. aeruginosa dropped rapidly and was reduced from 3 x 10(9) to 0.6 x 10(9) L(-1) after 52 min at current densities from 5 to 10 mA cm(-2). The cell density and optical density of M. aeruginosa decreased proportionally to the current density and the detention time. Scanning electron microscopy investigation of algae revealed surface damage and apparent leakage of intracellular contents after electrochemical cycling process. Due to the damage of cells, the chlorophyll-a released from the cells was degraded by electrochemical oxidation. The removal rate of chlorophyll-a could reach 96% at the current density of 10 mA cm(-2). Electrochemical treatment caused minor variation of pH values and conductivity of the suspensions. After electrochemical cycling processes, the optical density at 680 nm of algal cell suspensions remained below 0.1 after 6 days, and it showed that cells had no potential to survive and grow. The results implicated that the inactivation of M. aeruginosa was successfully performed by the electrochemical treatment, and it made the algal cells lose ability to survive, demonstrating the potential of such an alternative process for efficient water purification.  相似文献   

13.
Superoxide (and potentially its conjugate acid hydroperoxyl) is unique among the reactive oxygen species in that its standard redox potential in circumneutral natural waters potentially allows it to reduce ferric iron to the more soluble ferrous state. Here we have observed the superoxide/ hydroperoxyl-mediated reduction of ferric complexes with a variety of synthetic organic ligands and several complexes with natural organic matter (NOM), as well as freshly precipitated amorphous ferric oxyhydroxide, in bicarbonate buffered solutions at pH 8.1. From measurements of superoxide decay in the presence of the complexes, we calculated second-order rate constants for superoxide/ hydroperoxyl-mediated reduction that vary from (9.3+/-0.2) x 10(3) M(-1) s(-1) for the complex between Fe(III) and desferrioxamine B up to (1.9+/-0.2) x 10(5) M(-1) s(-1) for Fe(III)-salicylate and (2.3+/-0.1) x 10(5) M(-1) s(-1) for one of the Fe(III)-NOM complexes. We also verified that ferrous iron was produced from superoxide/hydroperoxyl-mediated Fe(III) reduction using ferrozine to trap free Fe(II). Low yields of the ferrozine complex when compared to the measured rates of superoxide decay suggest that ferric complexes are reduced directlyto corresponding ferrous complexes, with much of the ferrous complex reoxidizing before it is able to release free ferrous iron. This is an important consideration for microorganisms, as the kinetics of trace metal uptake is typically governed by free ion activity.  相似文献   

14.
The release of phosphorus (P) and iron (Fe) from a melter slag filter in solutions of varying Eh and pH was examined. The filter had been removing P from waste stabilization pond effluent for several years. The study revealed that the highest P (95% of total P) and Fe (25% of total Fe) release from the slag occurred in the solution with the lowest Eh (-400 mV, relative to the standard hydrogen electrode, SHE) and lowest pH (4.9). Solutions with high pH (9.1) also proved favorable for P release (20 to 40% of total P) from the slag, at both reducing (-400 mV) and oxidizing (+300 mV) Eh. By contrast, solutions with pH 4.9 and 6.7 and oxidizing Eh (+300 mV) liberated the lowest P and Fe contents into the aqueous phase (<1% for both elements). The findings showed that Eh and pH are important parameters affecting P release from slag filters. At low Eh and low pH, P is released due to the dissolution of Fe oxides/oxyhydroxides, as supported by scanning electron microscopy (SEM)/energy dispersive spectrometry (EDS). At high pH, P is desorbed from negatively charged Fe oxide/oxyhydroxide surfaces. The results of this investigation are pertinentto the design and operation of melter slag filters that treat all forms of P-rich waters, such as wastewater, stormwater, and farm runoff. The study demonstrated that P retention by melter slag filters is optimal in water bodies characterized by near-neutral pH and oxidizing Eh because these conditions favor P adsorption onto Fe oxides/oxyhydroxides.  相似文献   

15.
In this study, we examine the role of the hydroxyl (OH*) radical as a mechanism for the photodecomposition of chromophoric dissolved organic matter (CDOM) in sunlit surface waters. Using gamma-radiolysis of water, OH* was generated in solutions of standard humic substances in quantities comparable to those produced on time scales of days in sunlit surface waters. The second-order rate coefficients of OH* reaction with Suwannee River fulvic (SRFA; 2.7 x 10(4) s(-1) (mg of C/L)(-1)) and humic acids (SRHA; 1.9 x 10(4) s(-1) (mg of C/L)(-1)) are comparable to those observed for DOM in natural water samples and DOM isolates from other sources but decrease slightly with increasing OH* doses. OH* reactions with humic substances produced dissolved inorganic carbon (DIC) with a high efficiency of approximately 0.3 mol of CO2/mol of OH*. This efficiency stayed approximately constant from early phases of oxidation until complete mineralization of the DOM. Production rates of low molecular weight (LMW) acids including acetic, formic, malonic, and oxalic acids by reaction of SRFA and SRHA with OH* were measured using HPLC. Ratios of production rates of these acids to rates of DIC production for SRHA and for SRFA were similar to those observed upon photolysis of natural water samples. Bioassays indicated that OH* reactions with humic substances do not result in measurable formation of bioavailable carbon substrates other than the LMW acids. Bleaching of humic chromophores by OH* was relatively slow. Our results indicate that OH* reactions with humic substances are not likely to contribute significantly to observed rates of DOM photomineralization and LMW acid production in sunlit waters. They are also not likely to be a significant mechanism of photobleaching except in waters with very high OH* photoformation rates.  相似文献   

16.
Subsurface injection of nanoscale zerovalent iron (NZVI) has been used for the in situ remediation of chlorinated solvent plumes and DNAPL source zones. Due to the cost of materials and placement,the efficacy of this approach depends on the NZVI reactivity and longevity, selectivity for the target contaminant relative to nonspecific corrosion to yield H2, and access to the Fe0 in the particles. Both the reaction pH and the age of the particles (i.e., Fe0 content) could affect NZVI reactivity and longevity. Here, the rates of H2 evolution and trichloroethene (TCE) reduction are measured over the lifetime of the particles and at solution pH ranging from 6.5 to 8.9. Crystalline reactive nanoscale iron particles (RNIP) with different initial Fe0 weight percent (48%, 36%, 34%, 27%, and 9.6%) but similar specific surface area were studied. At the equilibrium pH for a Fe(OH)2/H2O system (pH = 8.9), RNIP exhibited first-order decay for Fe0 corrosion (H2 evolution) with respect to Fe0 content with a Fe0 half-life time of 90-180 days. A stable surface area-normalized TCE reduction rate constant 1.0 x 10(-3)L x hr(-1) x m(-2) was observed after 20 days and remained constant for 160 days, while the Fe0 content of the particles decreased by half, suggesting that TCE reduction is zero-order with respect to the Fe0 content of the particle. Solution pH affected H2 evolution and TCE reduction to a different extent. Decreasing pH from 8.9 to 6.5 increased the H2 evolution rate constant 27 fold from 0.008 to 0.22 day(-1), but the TCE dechlorination rate constant only doubled. The dissimilarities between the reaction orders of H2 evolution and TCE dechlorination with respect to both Fe0 content and H+ concentration suggest that different rate controlling steps are involved for the reduction reactions.  相似文献   

17.
Conditional distribution coefficients (K(DOM')) for Hg(II) binding to seven dissolved organic matter (DOM) isolates were measured at environmentally relevant ratios of Hg(II) to DOM. The results show that K(DOM') values for different types of samples (humic acids, fulvic acids, hydrophobic acids) isolated from diverse aquatic environments were all within 1 order of magnitude (10(22.5 +/-1.0)-10(23.5 +/- 1.0)) L kg(-1)), suggesting similar Hg(ll) binding environments, presumably involving thiol groups, for the different isolates. K(DOM') values decreased at low pHs (4) compared to values at pH 7, indicating proton competition for the strong Hg(II) binding sites. Chemical modeling of Hg(II)-DOM binding at different pH values was consistent with bidentate binding of Hg(II) by one thiol group (pK(a) = 10.3) and one other group (pK(a) = 6.3) in the DOM, which is in agreement with recent results on the structure of Hg(II)-DOM bonds obtained by extended X-ray absorption fine structure spectroscopy (EXAFS).  相似文献   

18.
We have investigated the kinetics of iron hydrolysis and precipitation and dissolution of the solid formed via a novel chemical method, namely accessibility of iron to the fungal siderophore desferrioxamine B (DFB), with spectrophotometric detection of the ferrioxamine complex. Our results support a mechanism in which precipitation of dissolved inorganic iron in seawater is first order with respect to total (dissolved and precipitated) iron, with a second-order rate constant of (4.1 +/- 1.1) x 10(7) M(-1) s(-1) at pH 8.1. The rate of dissolution was first order with respect to the total iron concentration and the first-order rate constant decreased from 2.3 x 10(-4) s(-1) after aging for 1 min to 4.8 x 10(-6) s(-1) after aging for 1 week. The proposed reaction mechanism simulated a solubility limit condition in agreement with experimental observations, from which we calculated the solubility of ferric iron to be 1.2 x 10(-13) M when the precipitate had been aged for 1 week. This is approximately 2 orders of magnitude less than reported in previous studies, possibly due to the chemically based method for dissolved iron determination used here compared with traditional physical separation methods. Our results confirm that Fe(III) hydrolysis in seawater is fast and show thatthe precipitated solid is quite labile initially but rapidly becomes much less so, with important implications for sequestration by organic ligands such as siderophores.  相似文献   

19.
Wetland surface waters that received drainage from agricultural fields were probed for constituents that would promote the photodegradation of agriculture herbicides. Alachlor proved to be a good chemical probe for examining indirect photolysis due to its lack of reactivity by either direct photolysis or dark reaction pathways and its ubiquity as an agricultural herbicide. Water samples were taken from natural (Old Woman Creek) and engineered wetlands in Ohio that receive copious amounts of agricultural runoff. Possible photosensitizers including dissolved organic matter (DOM), iron, and nitrate were measured in the samples. In alkaline waters (pH > 7.8), the photochemical degradation of alachlor became important only in the presence of high nitrate levels (approximately equal to 1 mM). In pH-adjusted (approximately 4) samples, the observed degradation rate coefficient increased 3-18 times of that measured at the natural pH. Methanol quenching experiments and kinetics modeling suggest that hydroxyl radical is the principal reactant. The promotion of the reaction at the lower pH was apparently related to the activation of the photochemical pathways associated with the DOM and possibly iron-DOM complexes. The rate coefficients measured for the photodegradation of alachlor in reconstituted DOM isolates (cation-exchanged material with very low iron levels) were similar in magnitude to those measured in natural waters containing low amounts of nitrate and high amounts of DOM. Moreover, these reactions also exhibited a pH dependency. Thus, these results suggest that DOM plays a role in promoting an indirect photolytic mechanism that is highly pH dependent.  相似文献   

20.
Humic substances (HS) are redox-active natural organic compounds and serve as electron shuttles between microorganisms and iron(III) minerals. Here we demonstrate that electron shuttling is possible only at concentrations of dissolved HS of at least 5-10 mg C/L. Although such concentrations can be found in many rivers, lakes, and even in some aquifers there are also many marine and freshwater systems with DOC < 5 mg C/L where consequently electron shuttling is not expected to happen. We found that in the case of HS concentrations which do not limit electron shuttling, Geobacter sulfurreducens transfers electrons to HS at least 27 times faster than to Fe(III)hydroxide. Microbially reduced HS transfer electrons to ferrihydrite at least 7 times faster than cells thereby first demonstrating that microbial mineral reduction via HS significantly accelerates Fe(III) mineral reduction and second that electron transfer from reduced HS to Fe(III) minerals represents the rate-limiting step in microbial Fe(III) mineral reduction via HS. Microbial reduction of HS transfers as many electrons to HS as chemical reduction with H2 indicating that all redox-active functional groups that can be reduced at a redox potential of -418 mV (Eh(0) of H2/H+ redox couple at pH 7) can also be reduced by microorganisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号