首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
采用简单的一步溶剂热法,以硝酸铋为铋源,硫代硫酸钠为硫源,将Bi_2S_3纳米粒子原位修饰在g-C_3N_4纳米片上,成功制备了零维/二维Bi_2S_3/g-C_3N_4异质结。利用XRD、SEM、TEM、UV-Vis、荧光光谱以及电化学分析方法等手段对所制备的光催化材料进行了表征。在可见光照射下,以罗丹明B(RhB)为模型污染物,研究其光催化降解效率。结果表明,Bi_2S_3以纳米颗粒的形式分散于g-C_3N_4纳米片上,形成了零维/二维异质结结构,拓宽了g-C_3N_4在可见光区的吸收,降低了电子-空穴对的复合概率;与纯g-C_3N_4相比,Bi_2S_3/g-C_3N_4异质结表现出更高的光催化效率。同时,Bi_2S_3/g-C_3N_4催化剂具有良好的光催化稳定性,经过5次循环后其光催化活性基本稳定。  相似文献   

2.
《功能材料》2021,52(8)
在具有金属缺陷的p型TiO_2表面原位负载高度分散Au纳米颗粒(APT)与g-C_3N_4复合后得到p-TiO_2/Au/g-C_3N_4间接Z型结(PTC-x),采用电感耦合等离子体质谱(ICP-MS)、高分辨透射电子显微镜(HRTEM)、X射线衍射(XRD)、热重分析测试(TG)、X射线光电子能谱(XPS)、紫外-可见光漫反射光谱(UV-Vis DRS)、电化学及交流阻抗测试(EIS)与自由基猝灭实验对复合物的组成和结构、光/电催化性能和电荷传递机制进行了评价。结果表明,PTC-x中Au高度分散且含量极低,并使p-TiO_2/g-C_3N_4体系电荷传递方向从II型结变为间接Z型结,实现光生电荷空间分离的同时保持了较高的氧化还原能力,光催化性能显著提高。光照下,p-TiO_2/Au/g-C_3N_4 Z型结的光催化活性顺序为:PTC-1 PTC-1.25 PTC-0.75 APT g-C_3N_4,其中PTC-1降解苯酚速率分别为g-C_3N_4和APT的7.9倍和2.3倍。  相似文献   

3.
以三聚氰胺为原料制备类石墨相氮化碳(g-C_3N_4),采用球磨与超声联用技术制备g-C_3N_4二维纳米片。利用X射线衍射光谱(XRD)、紫外-可见漫反射(UV-Vis)光谱、扫描电镜(SEM)、透射电镜(TEM)、原子力显微镜(AFM)、荧光(PL)光谱等分析手段对制备的催化剂进行了表征。结果表明:g-C_3N_4二维纳米片具有与体相g-C_3N_4相同的晶体结构,片层结构仅有5个原子层厚。g-C_3N_4二维纳米片增加了对可见光的吸收,提高了光生电子-空穴对的分离效率。以染料罗丹明B的降解反应研究了g-C_3N_4二维纳米片在可见光下的催化性能。结果表明,球磨超声1h后制备的g-C_3N_4二维纳米片表现出最佳的光催化性能,150min内对罗丹明B的降解率高达94%,是体相g-C_3N_4的2倍。  相似文献   

4.
以三聚氰胺、硝酸铋、偏钒酸铵、硝酸、氨水等为主要原料,在热解法合成g-C_3N_4基础上,通过水热法合成g-C_3N_4/BiVO_4复合光催化剂。采用XRD、SEM、BET和UV-Vis等对合成产物的物相组成、微观形貌和光催化性能进行表征,通过降解亚甲蓝溶液对试样的光催化性能进行评价。结果表明:g-C_3N_4/BiVO_4复合光催化剂的光催化性能较纯BiVO_4和g-C_3N_4有显著提高,当g-C_3N_4∶BiVO_4(理论合成质量比)=0.4∶1、水热温度为140℃、水热时间为10 h条件下,合成的g-C_3N_4/BiVO_4复合光催剂具有最佳光催化性能,在高压汞灯照射150 min条件下,对亚甲蓝溶液(10 mg/L)的降解率为80.8%,比相同条件下纯BiVO_4和g-C_3N_4的光催化效率分别提高47.5%和22.1%,且光催化反应符合一级动力学方程。  相似文献   

5.
通过固混法制备不同BiVO_4含量的BiVO_4/石墨相氮化碳(BiVO_4/g-C_3N_4)复合光催化材料。采用粉末X射线衍射仪、傅里叶变换红外光谱仪和扫描电子显微镜分别对BiVO_4/g-C_3N_4复合催化剂的晶相组成、官能团和微观形貌进行了表征;通过可见光照射下罗丹明B的降解来评价纳米复合材料的光催化活性。结果表明:在可见光照射3h后,30%(质量分数)BiVO_4/g-C_3N_4复合物的降解率最高,达到87%。BiVO_4/g-C_3N_4良好的光催化性能可以归因于在BiVO_4和g-C_3N_4的界面形成的异质结。  相似文献   

6.
铋系复合光催化剂的制备及其对双酚A光催化降解研究   总被引:1,自引:0,他引:1  
将氧化铋(Bi_2O_3)与三聚氰胺或盐酸胍混合煅烧,通过原位晶相合成法制备了界面紧密接触的碳三氮四复合碳酸氧铋(g-C_3N_4/Bi_2O_2CO_3)和碳三氮四复合氯氧化铋(g-C_3N_4/BiOCl)复合光催化剂。采用X射线衍射仪、扫描电子显微镜、紫外-可见漫反射光谱仪等分析手段对复合光催化剂的结构和性能进行了分析表征。结果表明:Bi_2O_2CO_3和BiOCl纳米片均是从g-C_3N_4体相中生长出来,从而导致铋系氧化物和g-C_3N_4界面间的紧密接触。紫外-可见漫反射光谱分析结果表明,g-C_3N_4/Bi_2O_2CO_3和g-C_3N_4/BiOCl复合光催化剂的可见光吸收能力均优于g-C_3N_4和Bi_2O_3。在可见光照射下,复合光催化剂对双酚A表现出优越的降解性能。此外,探讨了复合光催化剂的光催化机理。由于g-C_3N_4和Bi_2O_2CO_3或BiOCl界面间的紧密接触导致了光生载流子的有效分离,从而提高了复合光催化剂的光催化活性。  相似文献   

7.
采用水热法制备三维分级结构Bi_2WO_6,在此基础上采用浸渍-焙烧法将g-C_3N_4量子点成功沉积在Bi_2WO_6的表面,获得Z-型结构g-C_3N_4/Bi_2WO_6光催化剂。采用XRD,FE-SEM,TEM,UV-Vis-DRS测试手段对催化材料的组成、形貌和光吸收特性进行表征。以亚甲基蓝(MB)和对硝基苯酚(p-NPh)为模型污染物,考察g-C_3N_4量子点表面修饰对Bi_2WO_6光催化活性的影响。结果表明:所得Bi_2WO_6为三维分级多孔结构,孔尺寸约为10nm,浸渍-焙烧法可将尺寸约5nm的g-C_3N_4量子点沉积在其二级结构纳米片表面。Z-型结构g-C_3N_4/Bi_2WO_6光催化剂的催化活性优于纯Bi_2WO_6的,且10%g-C_3N_4/Bi_2WO_6(质量分数)异质光催化剂对MB的降解表观速率常数(k_(app))分别为纯Bi_2WO_6和g-C_3N_4的4.5倍和5.8倍,对p-NPh的k_(app)分别为纯Bi_2WO_6和g-C_3N_4的2.6倍和1.6倍。O■是光催化过程中的主要活性物种。g-C_3N_4量子点与Bi_2WO_6形成异质结,有利于拓宽光响应范围的同时有效抑制了Bi_2WO_6光生电子与空穴的复合,从而提高了催化剂的活性。  相似文献   

8.
在石墨型氮化碳(g-C_3N_4)表面上负载上通过柠檬酸钠化学还原法制备的尺寸约25nm的Au颗粒,获得Au/g-C_3N_4纳米复合材料。采用XRD、FT-IR、SEM、UV-Vis和拉曼等表征手段,考察了样品的结构、形貌与性能。结果表明,Au/g-C_3N_4纳米复合材料具有良好的SERS活性,可以用于重金属离子存在的检测。  相似文献   

9.
《功能材料》2021,52(9)
采用简单的煅烧-浸渍法制备了g-C_3N_4@CeO_2负载低含量金(0.003%(质量分数)Au)复合催化剂(Au/g-C_3N_4@CeO_2),研究了制备过程中不同三聚氰胺使用量对复合催化剂室温催化氧化甲醛性能的影响。运用X射线衍射(XRD)、透射扫描电镜(TEM),傅里叶变换红外光谱仪(FTIR)、拉曼(Raman)、N_2吸脱附和XPS等手段对所制备的催化剂进行了物化性质表征和分析。性能测试结果表明适当三聚氰胺使用量的Au/g-C_3N_4@CeO_2催化剂能将甲醛完全转化为二氧化碳和水,且甲醛去除率可达91.7%。原位红外结果表明甲酸盐和DOM是该催化反应的主要中间产物。该催化剂的优异性能主要归因于催化剂成分间的强相互作用、g-C_3N_4能够增大催化剂的比表面积和孔容而更有利于CeO_2和Au纳米颗粒的分散及CeO_2的存在促进了甲醛氧化反应的发生等因素。  相似文献   

10.
采用3种前驱物在同样的条件下,煅烧处理得到类石墨相氮化碳(g-C_3N_4),且分别与BiVO_4进行复合得到了BiVO_4/g-C_3N_4复合光催化剂。通过X射线衍射、红外光谱和紫外-可见分光光度计等表征手段证明了3种前驱物制备的g-C_3N_4及BiVO_4/g-C_3N_4复合催化剂的形成,并分别在可见光下考察其对罗丹明B(RhB)的光催化氧化降解性能。结果表明,由尿素制备的g-C_3N_4(CN-U)相较于由三聚氰胺和硫脲制备的样品(CN-M和CN-T),其对RhB的光催化降解活性更高,归因于其较大的比表面积与更高的氧化能力;制备的BiVO_4/g-C_3N_4复合催化剂对RhB降解活性均优于纯光催化剂,当BiVO_4与g-C_3N_4质量比为10%(wt,质量分数,下同)时最佳,且10%BiVO_4/CN-U的光催化活性最高。BiVO_4/g-C_3N_4复合催化剂由于两者界面高效的电荷转移,有利于光生载流子的分离。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号