首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
An oxy-acetylene flame spray torch was used to deposit thin layers of aluminum onto cured glass and basalt fiber-reinforced epoxy tubes. The composite specimens were fabricated by filament winding. Surface coatings embedded in composite laminates were produced. The composite substrates were grit blasted to promote adhesion of the molten aluminum particles. It was found that adhesion increased significantly when the composite substrate was lightly grit blasted, with no adhesion on smooth composite surfaces. The number of passes of the flame spray torch was varied to change the coating thickness and uniformity over the substrate. The electrical resistance of the coatings was measured to assess the suitability of a coating as a conductor. It was found that uniform, electrically conductive coatings were produced with a minimum of two torch passes. Optical images were captured to characterize the coating microstructure and thickness. This investigation did not reveal any visible evidence of damage to the composite substrate. To assess possible degradation effects from the grit blasting and flame spraying processes, the tube specimens were subjected to mechanical testing by applying internal pressurization with hydraulic oil. The tests indicated that the grit blasting and flame spraying processes must be carefully executed to mitigate degradation of the strength of the composite material substrate.  相似文献   

2.
Yttria-stabilized zirconia electrolyte coatings for solid oxide fuel cells were deposited by suspension plasma spraying using a range of spray conditions and a variety of substrates, including finely structured porous stainless steel disks and cathode layers on stainless steel supports. Electrolyte permeability values and trends were found to be highly dependent on which substrate was used. The most gas-tight electrolyte coatings were those deposited directly on the porous metal disks. With this substrate, permeability was reduced by increasing the torch power and reducing the stand-off distance to produce dense coating microstructures. On the substrates with cathodes, electrolyte permeability was reduced by increasing the stand-off distance, which reduced the formation of segmentation cracks and regions of aligned and concentrated porosity. The formation mechanisms of the various permeability-related coating features are discussed and strategies for reducing permeability are presented. The dependences of electrolyte deposition efficiency and surface roughness on process conditions and substrate properties are also presented.  相似文献   

3.
等离子熔-喷WC-17%Co涂层工艺参数对外观形貌的影响   总被引:7,自引:6,他引:1       下载免费PDF全文
等离子熔-喷技术同时具备等离子喷涂、熔焊技术的综合特点,可以实现各种陶瓷材料涂层与基体的冶金结合。Co基WC具有硬度高、耐磨损、耐腐蚀、耐高温等一系列优点。采用等离子熔-喷技术在Q235钢基体表面制备WC-17%Co涂层,通过研究等离子熔-喷工艺参数(等离子熔枪和喷枪角度、熔枪和喷枪与基材表面的距离、熔-喷速度、喷涂送粉量)对涂层外观形貌的影响,获得最佳的工艺参数,制备出外观形貌良好、无缺陷的熔-喷涂层。  相似文献   

4.
In this study, properties of NiCrBSi coatings, produced by a two-step process of flame deposition and furnace posttreatment, are analyzed. Adhesion strength, microstructure, porosity, microhardness, chemical composition, and residual stresses were analyzed after deposition and after heat treatment; that is, remelting. Numerous specimens were made to study the adhesion strength of coatings after flame deposition. The four chosen influential factors, that is, surface roughness, preheat temperature of the substrate, distance of flame torch, and type of oxyacetylene flame, were optimized to maximize the adhesion strength, using the Taguchi parametric method. The confirmation experiment showed that the developed experimental model is suitable for optimization of flame spraying deposition process. Based on the evaluation of coating properties, the best overall quality was obtained after remelting at a peak temperature 1080 °C with 5 minutes of holding time, followed by slow air cooling.  相似文献   

5.
Most of the existing multi-response optimization approaches focus on the subjective and practical know-how of the process. As a result, some confusion and uncertainty are introduced in the overall decision-making process. In this work, an approach based on a Utility theory and Taguchi quality loss function has been applied to the process parameters for low-pressure cold spray process deposition of copper coatings, for simultaneous optimization of more than one response characteristics. In the present paper, two potential response parameters, i.e., coating thickness and coating density, have been selected. Utility values based on these response parameters have been analyzed for optimization using the Taguchi approach. The selected input parameters of powder feeding arrangement, substrate material, air stagnation pressure, air stagnation temperature, and stand-off distance significantly improve the Utility function (raw data) comprising quality characteristics (coating thickness and coating density). The percentage contribution of the parameters to achieve a higher value of Utility function is substrate material (50.03%), stand-off distance (28.87%), air stagnation pressure (6.41%), powder feeding arrangement (4.68%), and air stagnation temperature (2.64%).  相似文献   

6.
Residual stress in high velocity oxy-fuel (HVOF) thermally sprayed WC-10Co-4Cr coating was studied based on design of experiment (DOE) with five factors of oxygen flow, fuel gas hydrogen flow, powder feed rate, stand-off distance, and surface speed of substrate. In each DOE run, the velocity and temperature of in-flight particle in flame, and substrate temperature were measured. Almen-type N strips were coated, and their deflections after coating were used for evaluation of residual stress level in the coating. The residual stress in the coating obtained in all DOE runs is compressive. In the present case of HVOF thermally sprayed coating, the residual stress is determined by three types of stress: peening, quenching, and cooling stress generated during spraying or post spraying. The contribution of each type stress to the final compressive residual stress in the coating depends on material properties of coating and substrate, velocity and temperature of in-flight particle, and substrate temperature. It is found that stand-off distance is the most important factor to affect the final residual stress in the coating, following by two-factor interaction of oxygen flow and hydrogen flow. At low level of stand-off distance, higher velocity of in-flight particle in flame and higher substrate temperature post spraying generate more peening stress and cooling stress, resulting in higher compressive residual stress in the coating.  相似文献   

7.
8.
利用喷雾干燥对TiB_2-SiC复合粉末进行造粒,研究了浆料固含量、粘结剂含量及SiC含量对喷雾干燥粉体颗粒形貌等的影响。采用大气等离子喷涂技术,以抛光的石墨为基体,在不同预热温度和不同喷距下对TiB_2-SiC粉末进行粒子收集,研究不同工艺参数对TiB_2-SiC粒子铺展形貌的影响,并制备了TiB_2-SiC涂层。结果表明:当浆料固含量为50%,粘结剂含量为5%,SiC含量为10%时,喷雾造粒获得球形度高、流动性好的TiB_2-SiC粉末;随着基体预热温度的升高,喷距的增大,扁平粒子的溅射逐渐减弱,形成规则的圆盘状粒子;在等离子焰流作用下,TiB_2-SiC粒子熔化加速并与基体发生碰撞,熔融粒子扁平化,急速冷却凝固,不断堆叠、搭接为宏观涂层。  相似文献   

9.
Substrate heating in the plasma spray process is one of the important parameters, which affects the microstructure of coatings and bonding between coating and substrate. In this study, a three-dimensional numerical model is developed to study the thermal exchange between the plasma jet and the substrate. The plasma jet temperature and velocity distributions and thermal flux to the substrate surface are predicted. The effects of arc current, gas flow rate, and stand-off distance on the temperature and velocity fields of the impinging plasma jet and thermal flux to the substrate are clarified. Results indicate that the three-dimensional effect has a very weak influence on the substrate heating. The air entrainment is compared for different cases. The present model is validated by comparing the present results with previous predictions and measurements. The temperature distributions in the substrate for different stand-off distances are predicted.  相似文献   

10.
高速火焰电弧(HVAF-ARC)复合喷涂枪是高速火焰喷涂枪和电弧喷涂枪的结合体,利用产生的高速燃气来雾化加速电弧喷涂过程中产生的熔融粒子,提高了喷涂粒子的飞行速度,降低了粒子的氧化,可高效制备优质的涂层。文中利用自主开发的新型高速火焰电弧复合喷涂枪和普通高速电弧喷涂枪,分别在钢基体上制备了3Cr13涂层,通过对涂层的性能检测发现,复合喷涂枪所制备涂层的氧元素含量和孔隙率都比普通高速电弧喷涂枪制备的涂层低,分别降低了33%和49%,硬度提高了12%,复合喷涂枪制备涂层的性能得到较大的提高。  相似文献   

11.
The spraying distance, substrate temperature, coating thickness and surface roughness of substrate during deposition play an important role on the plasma spray coating process and effect the final properties of the coatings. Al2O3 coatings on AISI 304 L stainless steel substrate were prepared to investigate the effects on the coating of these parameters. The results indicated that the parameters such as the spraying distance, substrate temperature, coating thickness and substrate roughness were fairly effected the hardness, porosity and surface roughness of Al2O3 coatings. The lowest surface roughness and the lowest porosity and the highest hardness values of Al2O3 coating were obtained for the spraying distance of 12 cm and the surface roughness of 3.28 μm and the substrate temperature of 500 °C. It also found that the increases of coating thickness were lowered the hardness and enhanced the porosity and the coating roughness.  相似文献   

12.
目的对TiO_2基涂层的等离子喷涂工艺参数进行优化。方法采用正交实验、基材温度采集并结合涂层微观形貌分析、能谱分析、结合强度试验、显微硬度测试等方法,研究了喷涂电流、喷涂距离、主气流量对涂层组织及性能的影响规律,并获得了优化的喷涂工艺参数。结果涂层分熔融区和部分熔融区,呈现双模结构的混合微观结构特征,截面形貌凹凸不平,并以机械结合为主。拉断后,涂层断裂面呈韧窝状,由陶瓷层到粘结层呈台阶状过渡,陶瓷层整体的内聚结合强度优于陶瓷层与粘结层结合界面的结合强度。涂层条带状夹杂随着粉末流到达基板的温度的增加而减少,对结合强度影响不显著,但对硬度影响较显著。等离子喷涂过程中,粉末流到达基板的温度在一定范围内时,涂层性能随着粉末流到达基板的温度的增加而增加,但粉末流到达基板的温度过大,涂层性能降低。结论获得最优涂层必须采用最优工艺参数,工艺参数对涂层综合性能的影响主次顺序为喷涂电流、喷涂距离、主气流量,得到的优化工艺参数为:喷涂电流350 A,喷涂距离110 mm,主气流量2100 L/h。  相似文献   

13.
目的对不同喷涂工艺参数下涂层的相结构、显微形貌进行研究,确定优化的喷涂工艺参数,讨论分析涂层的沉积行为机理。方法采用前驱体溶液等离子喷涂(SPPS)的方法制备纳米Yb_2O_3稳定的ZrO_2(YbSZ)涂层。在传统等离子喷涂的基础上,增加液料雾化装置,雾化喷嘴将溶液雾化后直接注入到等离子弧中,通过控制喷涂距离及喷涂功率,研究了涂层相结构、结晶度、晶粒尺寸以及显微形貌的变化趋势,并且结合显微形貌讨论了沉积机理。结果涂层呈现团聚大颗粒、纳米级粒子、大小均匀的孔隙三种显微形貌,大颗粒之间呈堆积形态。当喷涂功率为30 kW时,涂层呈现m-ZrO_2,平均晶粒尺寸达669 nm。随着喷涂距离、喷涂功率的增加,样品中检测到单一的t-ZrO_2相,而且纳米尺寸颗粒的数量大大增加,孔径变小。随着喷涂距离由60 mm增加到100 mm,平均晶粒尺寸先由429 nm减小到177 nm,随后又增加到319 nm。结论喷涂参数影响晶粒的结晶度、晶粒尺寸以及涂层的显微形貌,低功率下得到的涂层存在糊状未结晶组织。增大喷涂功率,可以有效增大结晶度和晶粒尺寸;随着喷涂距离的增大,晶粒尺寸先减小后增大。雾化液滴在等离子火焰中一般要经历浓缩、饱和、固化、析晶形核长大、粒子重熔扁平化的历程,喷涂功率越高,经历温区越高,液滴演变就越充分,通过优化工艺参数可以得到不同结构性能的功能涂层。  相似文献   

14.
Over the last few years, global economic growth has triggered a dramatic increase in the demand for resources, resulting in steady rise in prices for energy and raw materials. In the gas turbine manufacturing sector, process optimizations of cost-intensive production steps involve a heightened potential of savings and form the basis for securing future competitive advantages in the market. In this context, the atmospheric plasma spraying (APS) process for thermal barrier coatings (TBC) has been optimized. A constraint for the optimization of the APS coating process is the use of the existing coating equipment. Furthermore, the current coating quality and characteristics must not change so as to avoid new qualification and testing. Using experience in APS and empirically gained data, the process optimization plan included the variation of e.g. the plasma gas composition and flow-rate, the electrical power, the arrangement and angle of the powder injectors in relation to the plasma jet, the grain size distribution of the spray powder and the plasma torch movement procedures such as spray distance, offset and iteration. In particular, plasma properties (enthalpy, velocity and temperature), powder injection conditions (injection point, injection speed, grain size and distribution) and the coating lamination (coating pattern and spraying distance) are examined. The optimized process and resulting coating were compared to the current situation using several diagnostic methods. The improved process significantly reduces costs and achieves the requirement of comparable coating quality. Furthermore, a contribution was made towards better comprehension of the APS of ceramics and the definition of a better method for future process developments.  相似文献   

15.
阻燃型喷涂聚脲涂料的制备与性能表征   总被引:1,自引:1,他引:0  
目的 制备力学性能、热稳定性和表面形貌等相比普通喷涂聚脲涂料都无较大差异的阻燃型喷涂聚脲涂料.方法 以异氰酸酯预聚物为A组分、聚醚多元醇及胺基扩链剂为B组分,采用高压无气喷涂方法制备普通喷涂聚脲涂料.将溶剂型阻燃剂和无机填料型阻燃剂分别加入A、B组分中,采用同样的方法制备阻燃型喷涂聚脲涂料.通过极限氧指数和明火点燃的方式表征两种涂料试样的阻燃性能,并对比分析二者的力学性能、热力学性能和表面形貌.结果 相比普通喷涂聚脲涂料,阻燃型喷涂聚脲涂料的极限氧指数从18%提高至28%,拉伸强度从12.5 MPa变为11.3 MPa,断裂伸长率从430%下降至422%.虽然阻燃型喷涂聚脲涂料的力学强度有所下降,但是下降幅度很小且在使用范围内,而且涂料的极限氧指数升高,热稳定性和表面形貌均良好.另外,阻燃型喷涂聚脲涂料在明火点燃后离火自熄,无浓烟,无滴落物.结论 采用在A、B组分中添加阻燃剂的方法成功制备了阻燃型喷涂聚脲涂料,得到了力学性能和热稳定性良好的喷涂聚脲产品.  相似文献   

16.
微束等离子喷涂NiCrBSi涂层   总被引:1,自引:0,他引:1       下载免费PDF全文
采用微束等离子喷涂方法在St37低碳钢上制备了NiCrBSi涂层.研究了基材温度、等离子气体流量、喷涂距离和电流强度等工艺参数对涂层组织结构和性能的影响.采用光学显微镜观察涂层的组织结构,用Perthometers M4P 150测定涂层的表面粗糙度,以及用LECO TC316气体抽提仪检测涂层的氧含量.结果表明,在试验条件下,喷涂参数对涂层组织和性能产生较大的影响.随着电流和基材温度的增加涂层的粗糙度降低,涂层的氧含量随着基材温度和喷涂距离的增加而增加.大多数涂层的显微硬度大于600 HV0.2.尽管粒子速度较低,涂层的平均结合强度仍然大于50 MPa.  相似文献   

17.
The subject of this paper is the assessment of the thermal and mechanical properties of Invar steel coatings, deposited using electric arc spraying, and the correlation of these properties to the spray parameters and processes used to offer coatings with characteristics appropriate to the requirements of tools used in the fabrication of precision polymer matrix composite work pieces. In particular, two processing methods, inert and air atomization, and three arc spray gun configurations (air cap design) were evaluated. The low coefficient of thermal expansion (CTE) properties of Invar are maintained in the spray-deposited coatings using both high velocity oxy-fuel (HVOF) and air-atomized arc spraying, although HVOF coatings have significantly lower CTE and greater durability than those deposited by arc spraying. The mechanical properties of the coatings are low compared to bulk Invar, regardless of the spray parameters and hardware used. Inert arc spraying affords more consistent coating characteristics but this comes with a compromised durability. The spray hardware was found to be more significant in determining the coating properties than the parameters employed.  相似文献   

18.
WC-10Co-4Cr cermet coatings were deposited on the substrate of AISI 1045 steel by using high-velocity oxygen-fuel (HVOF) thermal spraying process. The Taguchi method including the signal-to-noise (S/N) ratio and the analysis of variance (ANOVA) was employed to optimize the porosity and, in turn, the corrosion resistance of the coatings. The spray parameters evaluated in this study were spray distance, oxygen flow, and kerosene flow. The results indicated that the important sequence of spray parameters on the porosity of the coatings was spray distance > oxygen flow > kerosene flow, and the spray distance was the only significant factor. The optimum spraying condition was 300 mm for the spray distance, 1900 scfh for the oxygen flow, and 6.0 gph for the kerosene flow. The results showed the significant influence of the microstructure on the corrosion resistance of the coatings. Potentiodynamic polarization and electrochemical impendence spectroscopy (EIS) results showed that the WC-10Co-4Cr cermet coating obtained by the optimum spraying condition with the lowest porosity exhibits the best corrosion resistance and seems to be an alternative to hard chromium coating.  相似文献   

19.
通过在钢基体表面制备涂层可以很好地延长钢铁材料的服役时间,减少因腐蚀造成的重大事故和人员伤亡。相较于传统的纯Zn涂层、纯Al涂层以及Zn-Al合金涂层,Zn-Al伪合金涂层能够为基体材料提供长久有效的腐蚀防护,在钢铁材料的腐蚀防护中具有巨大的应用潜力。简述了Zn-Al伪合金涂层电弧喷涂制备工艺的特点;介绍了Zn、Al、Zn-Al合金及Zn-Al伪合金涂层在模拟海洋环境下的腐蚀防护原理;在此基础上从组分、喷涂工艺参数(喷涂距离、喷涂电流和喷涂电压)、元素掺杂(Mg、Si及Re)及后处理工艺(封孔、激光重熔)等角度,论述了其对Zn-Al伪合金涂层耐蚀性的影响;讨论了Zn-Al伪合金涂层防腐体系在桥梁、海洋钢结构件、地下运输管道中的应用现状;最后总结了目前研究工作中存在的挑战,提出了电弧喷涂Zn-Al伪合金涂层尚需深入研究的重点问题,为提高钢铁材料使用寿命提供了参考。  相似文献   

20.
铝基非晶纳米晶复合涂层的喷涂工艺   总被引:1,自引:0,他引:1  
为了研究喷涂参数对涂层性能的影响规律,采用高速电弧喷涂技术制备铝基非晶纳米晶复合涂层,利用正交试验法系统研究喷涂电流、喷涂电压、喷涂距离、喷枪移动速度和雾化空气压力对涂层性能的影响规律。优化后的工艺参数为喷涂电流160 A,喷涂电压36 V,喷涂距离200 mm,喷枪移动速度300 mm/s,雾化空气压力0.7 MPa,喷涂参数对涂层性能影响的主次顺序为:雾化空气压力、喷涂电压、喷枪移动速度、喷涂电流和喷涂距离。采用扫描电子显微镜(SEM)、能谱仪(EDS)、X射线衍射仪(XRD)和透射电镜(TEM)对工艺优化后的涂层进行分析,同时对涂层的显微硬度和孔隙率进行了测试。结果表明,采用优化参数制备的涂层组织结构致密,孔隙率为1.13%,硬度可达392 HV0.1,涂层具有明显的非晶纳米晶相,非晶含量约为24.2%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号