首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 80 毫秒
1.
This paper implemented a new skin lesion detection method based on the genetic algorithm (GA) for optimizing the neutrosophic set (NS) operation to reduce the indeterminacy on the dermoscopy images. Then, k-means clustering is applied to segment the skin lesion regions. Therefore, the proposed method is called optimized neutrosophic k-means (ONKM). On the training images set, an initial value of \(\alpha \) in the \(\alpha \)-mean operation of the NS is used with the GA to determine the optimized \(\alpha \) value. The Jaccard index is used as the fitness function during the optimization process. The GA found the optimal \(\alpha \) in the \(\alpha \)-mean operation as \(\alpha _{\mathrm{optimal}} =0.0014\) in the NS, which achieved the best performance using five fold cross-validation. Afterward, the dermoscopy images are transformed into the neutrosophic domain via three memberships, namely true, indeterminate, and false, using \(\alpha _{\mathrm{optimal}}\). The proposed ONKM method is carried out to segment the dermoscopy images. Different random subsets of 50 images from the ISIC 2016 challenge dataset are used from the training dataset during the fivefold cross-validation to train the proposed system and determine \(\alpha _{\mathrm{optimal}}\). Several evaluation metrics, namely the Dice coefficient, specificity, sensitivity, and accuracy, are measured for performance evaluation of the test images using the proposed ONKM method with \(\alpha _{\mathrm{optimal}} =0.0014\) compared to the k-means, and the \(\gamma \)k-means methods. The results depicted the dominance of the ONKM method with \(99.29\pm 1.61\%\) average accuracy compared with k-means and \(\gamma \)k-means methods.  相似文献   

2.
Total variation (TV) denoising is a commonly used method for recovering 1-D signal or 2-D image from additive white Gaussian noise observation. In this paper, we define the Moreau enhanced function of \(L_1\) norm as \({\varPhi }_\alpha (x)\) and introduce the minmax-concave TV (MCTV) in the form of \({\varPhi }_\alpha (Dx)\), where D is the finite difference operator. We present that MCTV approaches \(\Vert Dx\Vert _0\) if the non-convexity parameter \(\alpha \) is chosen properly and apply it to denoising problem. MCTV can strongly induce the signal sparsity in gradient domain, and moreover, its form allows us to develop corresponding fast optimization algorithms. We also prove that although this regularization term is non-convex, the cost function can maintain convexity by specifying \(\alpha \) in a proper range. Experimental results demonstrate the effectiveness of MCTV for both 1-D signal and 2-D image denoising.  相似文献   

3.
The great attention to cognitive radio networks (CRNs) in recent years, as a revolutionary communication paradigm that aims to solve the problem of spectrum scarcity, prompts serious investigation on security issues of these networks. One important security concern in CRNs is the preservation of users location privacy, which is under the shadow of threat, especially in database-driven CRNs. To this end, in this paper, we propose a Location Privacy Preserving Database-Driven Spectrum-Sharing \((\hbox {L-PDS}^2)\) protocol for sharing the spectrum between PUs and SUs in a database-driven CRN, while protecting location privacy of both primary and secondary users, simultaneously. We also present two specific algorithms as implementations of \(\hbox {L-PDS}^2\) protocol. Our analytical results for the privacy protection capability of \(\hbox {L-PDS}^2\) protocol prove that it provides location privacy preservation with very high probability for users of both networks. Moreover, the simulation results show that the proposed algorithms are efficient in terms of run time.  相似文献   

4.
In video coder, inter-frame prediction causes distortion propagation among temporally adjacent frames. This distortion dependency is a crucial factor for rate control optimization. Quantization parameter cascading (QPC) is an efficient technique to achieve dependent rate distortion optimization (RDO). This paper proposes a general framework for temporal dependency analysis by leveraging a distortion propagation model, which is derived by employing window-based preanalysis on original frames. Then, a quantization parameter offset \(\delta \) model is proposed for achieving fine-granularity quantization control, according to the amount of distortion propagation measured by the relative propagation cost \(\rho \). This paper applies competitive decision in exploring \(\delta \)\(\rho \) model as accurate as possible and then proposes an improved \(\delta \)\(\rho \) model tailored for dependent RDO. The simulation results verify that the temporal QPC algorithm with the proposed model achieves up to 1.1–1.4 dB PSNR improvement, with smaller temporal distortion fluctuation contributed by efficient bit allocation.  相似文献   

5.
In this paper, a novel, high-performance and robust sense amplifier (SA) design is presented for small \(I_\mathrm{CELLl}\) SRAM, using fin-shaped field effect transistors (FinFET) in 22-nm technology. The technique offers data-line-isolated current sensing approach. Compared with the conventional CSA (CCSA) and hybrid SA (HSA), the proposed current feed-SA (CF-SA) demonstrates 2.15\(\times \) and 3.02\(\times \) higher differential current, respectively, for \({V}_{\mathrm{DD}}\) of 0.6 V. Our results indicate that even at the worst corner, CF-SA can provide 2.23\(\times \) and 1.7\(\times \) higher data-line differential voltage compared with CCSA and HSA, respectively. Further, 66.89 and 31.47 % reductions in the cell access time are achieved compared to the CCSA and HSA, respectively, under similar \(I_\mathrm{CELLl}\) and bit-line and data-line capacitance. Statistical simulations have proved that the CF-SA provides high read yield with 32.39 and 22.24 % less \(\upsigma _{\mathrm{Delay}}\). It also offers a much better read effectiveness and robustness against the data-line capacitance as well as \({V}_{\mathrm{DD}}\) variation. Furthermore, the CF-SA is able to tolerate a large offset of the input devices, up to 80 mV at \({V}_{\mathrm{DD}}=0.6\hbox {V}\).  相似文献   

6.
This paper addresses the problem of robust \(L_2{-}L_\infty \) control in delta domain for a class of Takagi–Sugeno (TS) fuzzy systems with interval time-varying delays and disturbance input. In particular, the system under study involves state time delay, uncertainties and fast sampling period \(\mathcal {T}\). The main aim of this work was to design a \(L_2{-}L_\infty \) controller such that the proposed TS fuzzy system is robustly asymptotically stable with a \(L_2{-}L_\infty \) prescribed performance level \(\gamma >0\). Based on the proper Lyapunov–Krasovskii functional (LKF) involving lower and upper bound of time delay and free-weighting technique, a new set of delay-dependent sufficient conditions in terms of linear matrix inequalities (LMIs) are established for obtaining the required result. The result reveals that the asymptotic stability is achieved quickly when the sampling frequency is high. Finally, a numerical example based on the truck–trailer model is given to demonstrate the effectiveness and potential of the proposed design technique.  相似文献   

7.
In this paper, the following problem is addressed: given a two-dimensional complete behavior\({\cal B}\) and one of its sub-behaviors\({\cal B}_B\), under what conditions a third complete behavior\({\cal B}_A\) can be found, such that\({\cal B} = {\cal B}_A + {\cal B}_B\) and\({\cal B}_A \cap {\cal B}_B\) is finite-dimensional autonomous? This constitutes a complete generalization of the decomposition theorem, as it represents a decomposition with “minimal intersection”, in which one of the two terms has been a priori fixed. The analysis carried on here completes the preliminary results reported in [Bisiacco and Valcher, Multidimensional Systems and Signal Processing, vol. 13,2002, pp. 289–315]. and completely generalizes the direct sum decomposition problem presented in [Bisiacco and Valcher, IEEE Transactions on Circuits and Systems Part I, CAS-I-48, no-4, 2001, pp. 490–494].  相似文献   

8.
Three fractional-order transfer functions are analyzed for differences in realizing (\(1+\alpha \)) order lowpass filters approximating a traditional Butterworth magnitude response. These transfer functions are realized by replacing traditional capacitors with fractional-order capacitors (\(Z=1/s^{\alpha }C\) where \(0\le \alpha \le 1\)) in biquadratic filter topologies. This analysis examines the differences in least squares error, stability, \(-\)3 dB frequency, higher-order implementations, and parameter sensitivity to determine the most suitable (\(1+\alpha \)) order transfer function for the approximated Butterworth magnitude responses. Each fractional-order transfer function for \((1+\alpha )=1.5\) is realized using a Tow–Thomas biquad a verified using SPICE simulations.  相似文献   

9.
The flash-evaporation technique was utilized to fabricate undoped 1.35-μm and 1.2-μm thick lead iodide films at substrate temperatures \( T_{\rm{s}} = 150 \)°C and 200°C, respectively. The films were deposited onto a coplanar comb-like copper (Cu-) electrode pattern, previously coated on glass substrates to form lateral metal–semiconductor–metal (MSM-) structures. The as-measured constant-temperature direct-current (dc)-voltage (\( I\left( {V;T} \right) - V \)) curves of the obtained lateral coplanar Cu-PbI2-Cu samples (film plus electrode) displayed remarkable ohmic behavior at all temperatures (\( T = 18 - 90\,^\circ {\hbox{C}} \)). Their dc electrical resistance \( R_{\rm{dc}} (T \)) revealed a single thermally-activated conduction mechanism over the temperature range with activation energy \( E_{\rm{act}} \approx 0.90 - 0.98 \,{\hbox{eV}} \), slightly less than half of room-temperature bandgap energy \( E_{\rm{g}} \) (\( \approx \,2.3\, {\hbox{eV}} \)) of undoped 2H-polytype PbI2 single crystals. The undoped flash-evaporated \( {\hbox{PbI}}_{\rm{x}} \) thin films were homogeneous and almost stoichiometric (\( x \approx 1.87 \)), in contrast to findings on lead iodide films prepared by other methods, and were highly crystalline hexagonal 2H-polytypic structure with c-axis perpendicular to the surface of substrates maintained at \( T_{\rm{s}} { \gtrsim }150^\circ {\hbox{C}} \). Photoconductivity measurements made on these lateral Cu-PbI2-Cu-structures under on–off visible-light illumination reveal a feeble photoresponse for long wavelengths (\( \lambda > 570\,{\hbox{nm}} \)), but a strong response to blue light of photon energy \( E_{\rm{ph}} \) \( \approx \,2.73 \, {\hbox{eV}} \) (\( > E_{\rm{g}} \)), due to photogenerated electron–hole (e–h) pairs via direct band-to-band electronic transitions. The constant-temperature/dc voltage current–time \( I\left( {T,V} \right) - t \) curves of the studied lateral PbI2 MSM-structures at low ambient temperatures (\( T < 50^\circ {\hbox{C}} \)), after cutting off the blue-light illumination, exhibit two trapping mechanisms with different relaxation times. These strongly depend on \( V \) and \( T \), with thermally generated charge carriers in the PbI2 mask photogenerated (e–h) pairs at higher temperatures.  相似文献   

10.
We give a detailed account of the use of \(\mathbb {Q}\)-curve reductions to construct elliptic curves over \(\mathbb {F}_{p^2}\) with efficiently computable endomorphisms, which can be used to accelerate elliptic curve-based cryptosystems in the same way as Gallant–Lambert–Vanstone (GLV) and Galbraith–Lin–Scott (GLS) endomorphisms. Like GLS (which is a degenerate case of our construction), we offer the advantage over GLV of selecting from a much wider range of curves and thus finding secure group orders when \(p\) is fixed for efficient implementation. Unlike GLS, we also offer the possibility of constructing twist-secure curves. We construct several one-parameter families of elliptic curves over \(\mathbb {F}_{p^2}\) equipped with efficient endomorphisms for every \(p > 3\), and exhibit examples of twist-secure curves over \(\mathbb {F}_{p^2}\) for the efficient Mersenne prime \(p = 2^{127}-1\).  相似文献   

11.
12.
Multiferroic \(BiFeO_3\) (BFO) with bandgap energy (\(E_g\)) between 2.2 eV to 2.7 eV is a potential candidate for photovoltaic (PV) application. However, the efficiency of BFO based PV solar cells is reportedly still too low (less than 2%) to be used for practical applications. Reducing \(E_g\) of BFO without compromising the ferroelectric properties is a big challenge to the scientific community to obtain power conversion efficiencies beyond the maximum value of 26.6% reported in general for silicon based hetero-structure PV solar cells. In this context, samarium (Sm) and cobalt (Co) co-doped BFO (\(Bi_{0.9}Sm_{0.1}Fe_{0.9}Co_{0.1}O_3\)) nanoparticles were synthesized using the sol-gel method. X-ray diffractometry was employed to determine the structure of synthesized nanoparticles. A well-defined crystalline structure of co-doped BFO nanoparticles was confirmed. Field emission scanning electron microscopy was carried out to study grain morphology of synthesized nanoparticles. Sm and Co dopants have been shown to reduce grain size significantly from 68.3 nm to 18.5 nm. An UV-Vis-NIR spectrophotometer was used to measure diffuse reflectance to calculate \(E_g\). A significant reduction of \(E_g\) down to 1.50 eV of co-doped BFO compared to undoped and or single doped counterpart has been manifested.  相似文献   

13.
In this work, we present a self cascode based ultra-wide band (UWB) low noise amplifier (LNA) with improved bandwidth and gain for 3.1–10.6 GHz wireless applications. The self cascode (SC) or split-length compensation technique is employed to improve the bandwidth and gain of the proposed LNA. The improvement in the bandwidth of SC based structure is around 1.22 GHz as compared to simple one. The significant enhancement in the characteristics of the introduced circuit is found without extra passive components. The SC based CS–CG structure in the proposed LNA uses the same DC current for operating first stage transistors. In the designed UWB LNA, a common source (CS) stage is used in the second stage to enhance the overall gain in the high frequency regime. With a standard 90 nm CMOS technology, the presented UWB LNA results in a gain \(\hbox {S}_{21}\) of \(20.10 \pm 1.65\,\hbox {dB}\) across the 3.1–10.6 GHz frequency range, and dissipating 11.52 mW power from a 1 V supply voltage. However, input reflection, \(\hbox {S}_{11}\), lies below \(-\,10\) dB from 4.9–9.1 GHz frequency. Moreover, the output reflection (\(\hbox {S}_{22}\)) and reverse isolation (\(\hbox {S}_{12}\)), is below \(-\,10\) and \(-\,48\) dB, respectively for the ultra-wide band region. Apart from this, the minimum noise figure (\(\hbox {NF}_{min}\)) value of the proposed UWB LNA exists in the range of 2.1–3 dB for 3.1–10.6 GHz frequency range with a a small variation of \(\pm \,0.45\,\hbox {dB}\) in its \(\hbox {NF}_{min}\) characteristics. Linearity of the designed LNA is analysed in terms of third order input intercept point (IIP3) whose value is \(-\,4.22\) dBm, when a two tone signal is applied at 6 GHz with a spacing of 10 MHz. The other important benefits of the proposed circuit are its group-delay variation and gain variation of \(\pm \,115\,\hbox {ps}\) and \(\pm \,1.65\,\hbox {dB}\), respectively.  相似文献   

14.
A secret-sharing scheme realizes a graph if every two vertices connected by an edge can reconstruct the secret while every independent set in the graph does not get any information on the secret. Similar to secret-sharing schemes for general access structures, there are gaps between the known lower bounds and upper bounds on the share size for graphs. Motivated by the question of what makes a graph “hard” for secret-sharing schemes (that is, they require large shares), we study very dense graphs, that is, graphs whose complement contains few edges. We show that if a graph with \(n\) vertices contains \(\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^{1+\beta }\) edges for some constant \(0 \le \beta <1\), then there is a scheme realizing the graph with total share size of \(\tilde{O}(n^{5/4+3\beta /4})\). This should be compared to \(O(n^2/\log (n))\), the best upper bound known for the total share size in general graphs. Thus, if a graph is “hard,” then the graph and its complement should have many edges. We generalize these results to nearly complete \(k\)-homogeneous access structures for a constant \(k\). To complement our results, we prove lower bounds on the total share size for secret-sharing schemes realizing very dense graphs, e.g., for linear secret-sharing schemes, we prove a lower bound of \(\Omega (n^{1+\beta /2})\) for a graph with \(\left( {\begin{array}{c}n\\ 2\end{array}}\right) -n^{1+\beta }\) edges.  相似文献   

15.
This paper presents a new approach called polynomial discrete Radon transform (PDRT), regarded as a generalization of the classical finite discrete Radon transform. Specifically, the PDRT transforms an image into Radon space by summing the pixels according to polynomial curves. The PDRT can be applied on square \(p \times p\) images where \(p\) is assumed to be a prime number. It is based on a simple arithmetic operations and requires no data interpolation. An interesting property of the PDRT is its exact inversion. This means that an image can be transformed and then perfectly reconstructed. Through this study, we show that the new approach can be applied for some pattern recognition applications.  相似文献   

16.
In typical applications of homomorphic encryption, the first step consists for Alice of encrypting some plaintext m under Bob’s public key \(\mathsf {pk}\) and of sending the ciphertext \(c = \mathsf {HE}_{\mathsf {pk}}(m)\) to some third-party evaluator Charlie. This paper specifically considers that first step, i.e., the problem of transmitting c as efficiently as possible from Alice to Charlie. As others suggested before, a form of compression is achieved using hybrid encryption. Given a symmetric encryption scheme \(\mathsf {E}\), Alice picks a random key k and sends a much smaller ciphertext \(c' = (\mathsf {HE}_{\mathsf {pk}}(k), \mathsf {E}_k(m))\) that Charlie decompresses homomorphically into the original c using a decryption circuit \(\mathcal {C}_{{\mathsf {E}^{-1}}}\). In this paper, we revisit that paradigm in light of its concrete implementation constraints, in particular \(\mathsf {E}\) is chosen to be an additive IV-based stream cipher. We investigate the performances offered in this context by Trivium, which belongs to the eSTREAM portfolio, and we also propose a variant with 128-bit security: Kreyvium. We show that Trivium, whose security has been firmly established for over a decade, and the new variant Kreyvium has excellent performance. We also describe a second construction, based on exponentiation in binary fields, which is impractical but sets the lowest depth record to \(8\) for \(128\)-bit security.  相似文献   

17.
In this paper, we propose an LC-VCO using automatic amplitude control and filtering technique to eliminate frequency noise around 2\(\omega _0\). The LC-VCO is designed with TSMC 130 nm CMOS RF technology, and biased in subthreshold regime in order to get more negative transconductance to overcome the losses in the LC-Tank and achieve less power consumption. The designed VCO operates at 5.17 GHz and can be tuned from 5.17 to 7.398 GHz, which is corresponding to 35.5% tuning range. The VCO consumes through it 495–440.5 \(\upmu\)W from 400 mV dc supply. This VCO achieves a phase noise of \(-\,122.3\) and \(-\,111.7\) dBc/Hz at 1 MHz offset from 5.17 and 7.39 GHz carrier, respectively. The calculated Figure-of-merits (FoM) at 1 MHz offset from 5.17 and 7.39 GHz is \(-\,199.7\) and \(-\,192.4\) dBc/Hz, respectively. And it is under \(-\,190.5\) dBc/Hz through all the tuning range. The FoM\(_T\) at 1 MHz offset from 5.17 GHz carrier is \(-\,210.6\) dBc/Hz. The proposed design was simulated for three different temperatures (\(-\,55\), 27, \(125\,^{\circ }\hbox {C}\)), and three supply voltages (0.45, 0.4, 0.35 V), it was concluded that the designed LC-VCO presents high immunity to PVT variations, and can be used for multi-standard wireless LAN communication protocols 802.11a/b/g.  相似文献   

18.
The least mean p-power (LMP) is one of the most popular adaptive filtering algorithms. With a proper p value, the LMP can outperform the traditional least mean square \((p=2)\), especially under the impulsive noise environments. In sparse channel estimation, the unknown channel may have a sparse impulsive (or frequency) response. In this paper, our goal is to develop new LMP algorithms that can adapt to the underlying sparsity and achieve better performance in impulsive noise environments. Particularly, the correntropy induced metric (CIM) as an excellent approximator of the \(l_0\)-norm can be used as a sparsity penalty term. The proposed sparsity-aware LMP algorithms include the \(l_1\)-norm, reweighted \(l_1\)-norm and CIM penalized LMP algorithms, which are denoted as ZALMP, RZALMP and CIMLMP respectively. The mean and mean square convergence of these algorithms are analysed. Simulation results show that the proposed new algorithms perform well in sparse channel estimation under impulsive noise environments. In particular, the CIMLMP with suitable kernel width will outperform other algorithms significantly due to the superiority of the CIM approximator for the \(l_0\)-norm.  相似文献   

19.
In this paper, we investigate the application of Kerr-like nonlinear photonic crystal (PhC) ring resonator (PCRR) for realizing a tunable full-optical add–drop filter. We used silicon (Si) nano-crystal as the nonlinear material in pillar-based square lattice of a 2DPhC. The nonlinear section of PCRR is studied under three different scenarios: (1) first only the inner rods of PCRR are made of nonlinear materials, (2) only outer rods of PCRR have nonlinear response, and (3) both of inner and outer rods are made of nonlinear material. The simulation results indicate that optical power required to switch the state of PCRR from turn-on to turn-off, for the nonlinearity applied to inner PCRR, is at least \(2000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) and, for the nonlinearity applied to outer PCRR, is at least \(3000\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) which corresponds to refractive index change of \(\Delta n_\mathrm{NL }= 0.085\) and \(\Delta n_\mathrm{NL }= 0.15\), respectively. For nonlinear tuning of add–drop filter, the minimum power required to 1 nm redshift the center operating wavelength \((\lambda _{0} = 1550\, \hbox {nm})\) for the inner PCRR scenario is \(125\, \hbox {mW}{/}\upmu \hbox {m}^{2}\) (refractive index change of \(\Delta n_\mathrm{NL}= 0.005)\). Maximum allowed refractive index change for inner and outer scenarios before switch goes to saturation is \(\Delta n_\mathrm{NL }= 0.04\) (maximum tune-ability 8 nm) and \(\Delta n_\mathrm{NL }= 0.012\) (maximum tune-ability of 24 nm), respectively. Performance of add–drop filter is replicated by means of finite-difference time-domain method, and simulations displayed an ultra-compact size device with ultra-fast tune-ability speed.  相似文献   

20.
In this paper, we first present an enhancement of the well-known Karatsuba 2-way and 3-way algorithms for characteristic three fields, denoted by \(\mathbb {F}_{3^{n}}\) where n≥1. We then derive a 3-way polynomial multiplication algorithm with five 1/3 sized multiplications that use interpolation in \(\mathbb {F}_{9}\). Following the computation of the arithmetic and delay complexity of the proposed algorithm, we provide the results of our hardware implementation of polynomial multiplications over \(\mathbb {F}_{3}\) and \(\mathbb {F}_{9}\). The final proposal is a new 3-way polynomial multiplication algorithm over \(\mathbb {F}_{3}\) that uses three polynomial multiplications of 1/3 of the original size over \(\mathbb {F}_{3}\) and one polynomial multiplication of 1/3 of the original size over \(\mathbb {F}_{9}\). We show that this algorithm represents about 15% reduction of the complexity over previous algorithms for the polynomial multiplications whose sizes are of practical interest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号