首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
热解金属有机骨架材料(MOFs)可以得到活性物质均匀嵌入的杂原子掺杂多孔碳材料,这种多孔碳材料在电催化领域具有重要的研究意义。对以Co2+为中心离子,2,5-噻吩二羧酸和4,4-联吡啶为有机配体的Co基金属有机骨架材料([Co(tdc)(bpy)]2n)进行热解处理,成功制备了Co和Co9S8纳米颗粒均匀嵌入的S、N共掺杂的多孔碳材料(Co/Co9S8@SNC)。其中700℃下热解得到的Co/Co9S8@SNC-700上形成的Co和Co9S8催化颗粒的比例适中,且多孔碳上的S和N掺杂的形式及比例也最佳。故Co/Co9S8@SNC-700在碱性电解液中表现出最佳的氧还原及氧析出双功能电催化性能和导电性。电化学测试结果表明,Co/Co9S8@SNC-700的氧还原极...  相似文献   

2.
Co3O4作为超级电容器材料,因具有理论比容量高、价格成本低、无毒环保、储量丰富等优点而备受关注,但制备出电化学性能优异的Co3O4超级电容器材料仍是个巨大的挑战。通过与导电性突出的碳材料复合,增加了电子/离子的传输速度,提高了Co3O4超级电容器材料电化学性能。综述了Co3O4/碳复合超级电容器材料的合成方法,归纳了各个方法的优缺点,分析了影响Co3O4/碳复合超级电容器电化学性能的因素,最后,指出了Co3O4/碳复合超级电极材料所面临的问题和发展前景。  相似文献   

3.
通过水热法制备了一种单质镍掺杂Co3O4(Ni/Co3O4)的粉末,用伏安特性循环法研究了其电化学性能,同时根据第一性原理从原子尺度和电子结构的角度探究了Ni和Co3O4的掺杂机理。首先合成Ni/Co3O4粉末;其次对合成的材料结构及性能进行XRD和SEM表征分析,研究不同钴源及同一钴源不同钴镍比对制备的镍Ni/Co3O4形貌的影响;最后在不同缺陷和不同掺杂的影响下,建立准确的材料性能预测模型,揭示了修饰电极掺杂改性的微观机理。结果表明,不同钴源均制备出了花状形貌的Ni/Co3O4复合材料,电化学性能测试得到其比电容为670F/g;第一性原理计算所得掺杂机理,揭示了电化学修饰的Ni/Co3O4复合电极较大提高了材料的导电性能。  相似文献   

4.
通过硝酸根电化学还原反应将NO3-转化为NH3是一种有前景的制氨和“绿氢”储存方案.Co3O4对于硝酸根还原析氨反应表现出较高的析氨法拉第效率和稳定性,有望成为理想的催化剂.然而,在Co3O4上发生硝酸根还原反应仍需较高的过电位,从而阻碍了能量转换效率的提升.本文中,我们合成了Cu掺杂Co3O4多孔空心纳米球用作硝酸根还原析氨催化剂.Cu掺杂在保障析氨法拉第效率和稳定性的前提下大幅降低了反应所需的过电位,有效提高了析氨速率.实验和理论分析均表明,Cu掺杂使Co3O4的最高占据态能量上移,缩小了Co3O4的最高占据态与NO3-的最低未占据分子轨道之间的能垒,从而降低了电子从Co3O4向NO3  相似文献   

5.
过氧化氢(H2O2)作为一种环境友好的化学品被广泛应用于多个领域。相对于传统的蒽醌法,基于双电子水氧化过程电催化制备H2O2具备反应过程简单、毒副产物少、可原位合成等优点。采用旋涂法制备掺杂不同浓度、不同种类金属离子(Cr3+、In3+、Sb3+)的钒酸铋(BiVO4)薄膜,并系统探究其电催化氧化水产H2O2性能。实验结果表明,掺杂Cr3+可以提高BiVO4的电流密度,其中3%Cr:BiVO4在3.08 V vs RHE偏压下的电流密度约为29 mA/cm2;掺杂In3+和Sb3+可以提高BiVO4对双电子水氧化反应的选择性。  相似文献   

6.
以硝酸钴、硝酸锌、尿素、氟化铵为原料,泡沫镍为基体,在水热法的基础上,利用两性金属的特点,通过引入Zn2+离子,并结合碱洗过程,在泡沫镍基体表面合成了高纯度独特的棱柱状Co3O4纳米团簇纤维。制备的Co3O4/Ni电极的形貌及成分通过扫描电子显微镜与X射线衍射进行了表征,电极的电化学性能利用循环伏安法与计时电流法测试,测试均在1mol/L KOH溶液中进行。结果表明:利用Zn2+诱导在泡沫镍表面制备的Co3O4呈现一种棱柱状纳米团簇纤维结构。这种结构的Co3O4纳米材料具有高的比表面积,在对葡萄糖检测过程中表现出优越的电化学性能,当其作为电极,表现出检测灵敏度高[23430μA/(mmol/L·cm2)],检出限低(1.547μmol/L)和线性检测范围宽(0~2.75mmol/L)的特点。抗干扰实验在+0.5Vvs.SCE进行,结果显示制备的Co3O4/Ni电极对葡萄糖具有优异的选择性。因此可应用于无酶葡萄糖传感器的电极材料来改善现有无酶葡萄糖传感器材料响应范围小,灵敏度低等问题。  相似文献   

7.
非质子锂氧电池基于锂金属与氧的可逆反应生成Li2O2,可提供极高的理论能量密度.然而,Li2O2的成核/消除机制仍然不清楚.因此,构建能在原子水平上深入了解催化机理的催化剂体系,是开发高性能锂氧电池的关键.在此,我们报道了一种在富氧空位的Co3O4(Pd1-Co3O4x)中实现Pd单原子选择性锚定的策略.原子水平表征技术揭示了Pd原子优先地结合到缺陷Co3O4的四面体位点.理论计算表明,选择性锚定的Pd单原子与氧空位的耦合引起了明显的电荷重分布,这可以有效地提高Pd 4d轨道在费米能级附近的能带占用率,促进电子转移,有利于中间体的吸附.这种双重相互作用不仅可以调节放电过程中Li2O2的成核生长过程,而且有利于Li2O2上的电子云的离域,减弱Li-O键的强度,从而...  相似文献   

8.
以有机化合物作为助剂合成纳米材料, 可调控材料的形貌和结构, 进而影响材料的催化和电化学性能。以乙二胺四乙酸二钠盐(EDTA-2Na)为助剂, 乙酸钴为钴源, 利用水热法合成Co3O4纳米材料, 测定材料的结构和气敏性能, 研究其结构与气敏性能的关系, 并探讨EDTA-2Na在材料合成中的作用机制。结果表明, Co2+与EDTA2-形成的配合物调控Co3O4晶核的生长方向, 形成了边长约为50 nm的六边形介孔纳米片。在205 ℃下, 利用该材料构筑的气敏传感器对100×10-6甲苯响应值约为104, 在225 ℃下对100×10-6丙酮的响应值约为70。该传感器对甲苯和丙酮等挥发性有机化合物(VOCs)的高响应性能是由于EDTA-2Na辅助合成的Co3O4表面存在的大量缺陷, 提高了吸附氧含量。另外, 介孔结构和较大的比表面积有利于VOCs的吸附、表面反应和扩散。本研究提供了一种添加EDTA-2Na辅助合成Co3O4纳米材料并获得高响应VOCs气体传感器的有效方法。  相似文献   

9.
缺陷位点的引入可以通过增加对反应中间体的亲和力来提高催化剂的催化能力.纳米材料中存在多种缺陷类型,如阳离子缺陷和阴离子缺陷.不同的缺陷位点对电催化性能的贡献不同.因此,构筑缺陷必须精准、明确,以便于确定最优的缺陷类型,促进电化学反应.在这项工作中,我们以钴空位为例,分别成功合成了二价钴空位(Co3O 4-VCo(II))和三价钴空位(Co3O4-VCo(III))的Co3O4.电化学结果表明,钴空位的引入可以显著提高Co3O4的电催化性能. Co3O4-VCo(II)表现出最突出的析氧反应(OER)性能,反应动力学速率最快. X射线光电子能谱分析表明,在OER过程中, VCo(II)的存在可以使CoOOH活性位点快速形成.密度泛函理论计算表明,钴空位的引入使Co3O4拥有类似金属的导电性. VCo(II)的存在使得O p带中心靠近费米能级,自由能势垒降低,电催化剂表面氧...  相似文献   

10.
以5-磺基水杨酸和戊二酸为螯合和氧化试剂,在水热条件下将硫酸钴氧化成纳米级Co3O4。以碳纳米管薄膜为载体将Co3O4颗粒紧密地附着在碳纳米管上使其填充入碳纳米管薄膜的空隙生成Co3O4/碳纳米管复合材料薄膜(Co3O4@CNTs),并研究其储锂性能。电化学测试结果表明,Co3O4@CNTs薄膜具有较高的放电比容量和优异的倍率性能,在0.2C倍率下初始放电比容量高达1712.5 mAh·g-1,100圈循环后放电比容量为1128.9 mAh·g-1的;在1C倍率下100圈循环后放电比容量仍然保持527.8 mAh·g-1。Co3O4@CNTs薄膜优异的性能源于Co3O4与CNTs的协同作用。高分散性的Co3O4增大了活性材料与电解液之间的接触面积,CNTs有助于形成良好的导电网络提高电子电导率,进而提高了Co3O4负极材料的循环性能和倍率性能。  相似文献   

11.
采用草酸盐-热解法制备钴/锌双金属多孔氧化物复合材料,并用于催化过一硫酸盐(PMS)处理亚甲基蓝(MB)溶液。以Co(NO3)2·6H2O和Zn(NO3)2·6H2O为金属离子源,草酸为沉淀剂,Co2+和Zn2+同步沉淀获得钴锌草酸盐前驱体,将草酸盐热解后获得具有不同Co/Zn摩尔比的多孔Co3O4/ZnO复合氧化物催化剂。结果表明:Co/Zn原料比为1∶5的复合材料(Co1Zn5)催化活性最佳,在催化剂用量和PMS浓度分别为0.02 g·L-1和0.6 mmol·L-1时,其对MB溶液的降解率可达98.49%。电子顺磁共振(EPR)测试结果表明,Co1Zn5/PMS催化氧化体系对MB的降解遵循自由基和非自由基双重机理。Co1  相似文献   

12.
通过双电子(2e-)途径的电催化氧还原方式能够即时合成过氧化氢(H2O2),远超传统的蒽醌工艺。近年来,碳电极因具有良好的催化效果和优越的稳定性在电催化合成H2O2方面受到越来越多的关注。本综述结合材料改性与润湿性调整,从三相界面的角度考虑与H2O2合成速率及使用寿命的关系。介绍了碳电极的结构与电催化合成H2O2的原理,包括单质炭材料、无金属催化剂、贵金属催化剂与非贵金属催化剂4种主流催化剂;金属阳极与电解液对于三相界面的影响;碳电极润湿性与三相界面的关系,指出侧重于提高2e-途径选择性的改性方式也会对电极润湿性造成影响。此外,合理地设计电器原件与提升碳电极合成H2O2功效的关系。最后,讨论了当前碳电极电催化合成H2O2所面临的问题与未来的研究方向。  相似文献   

13.
采用水热-浸渍还原法将Pd-Sn-Co纳米粒子固载到氧化石墨烯(GO)/CuBi2O4载体上,成功获得Pd-Sn-Co@还原氧化石墨烯(rGO)/CuBi2O4复合催化剂,并用于碱性介质中乙二醇的电催化氧化。通过比较单金属Pd、双金属Pd-Co、Pd-Sn及三金属Pd-Sn-Co@rGO/CuBi2O4四种负载型催化剂的电催化性能发现,三金属Pd-Sn-Co@rGO/CuBi2O4展现出最高的电催化活性和抗毒能力,其正向峰电流密度达到186.54 mA·cm?2,是商用Pd/C (29.57 mA·cm?2)的6.3倍。这种优良的电氧化性能归功于载体GO/CuBi2O4独特的三维结构为负载金属提供了充足的界面和活性位点及良好分散性的Pd-Sn-Co三金属纳米粒子之间强烈的协同作用,此外,将GO引入到CuBi2O4中有利于多金属纳米粒子的负载并吸附更多的含氧物种,提供优良的电子转移并增大与乙二醇分子的接触面积。这种新型复合材料的制备为发展高效Pd基电催化氧化直接醇类燃料电池提供了新途径,具有较好的理论和应用价值。   相似文献   

14.
综述了近年来四氧化三钴(Co3O4)基光催化材料的改性和优化方法,包括对单一Co3O4材料进行形貌控制(0D、1D、2D、3D)和晶面控制,元素掺杂,以及构建复合材料,如与金属、金属氧化物、其他金属基材料、碳基材料、二维层状材料、支撑材料和聚合物等构建复合物。并在此基础上对今后的研究重点和方向提出了展望。  相似文献   

15.
通过简单的水热法制备了Co3O4/rGO/g-C3N4催化剂,并在可见光照射下用于光催化臭氧氧化降解2,4-二氯苯氧乙酸(2,4-D)。利用XRD, SEM, TEM, XPS, UV-vis DRS, FT-IR和瞬态光电流对样品进行测试表征。研究表明,Co3O4, rGO和g-C3N4形成异质结后光生电子-空穴(e--h+)对的分离效率,e-的迁移能力以及光催化臭氧氧化活性都明显提升。此外,0.5Co3O4/0.25rGO/GCN对2,4-D具有100%的去除率,并具有最高反应速率(k=0.070 9 min-1)。经过计算得出光催化臭氧氧化2,4-D的协同因子为3.91,表明光催化和臭氧氧化间具有较好的协同效应。活性组分的捕获实验结果表明h+和·OH是光催...  相似文献   

16.
采用简单的水热法制备了Sn掺杂的有机框架化合物(MOFs),再煅烧衍生出Sn掺杂In2O3(Sn-In2O3)气敏材料。表征结果表明,材料的形貌是中空微米棒且材料的比表面积较大、Sn元素成功被掺杂,材料表面的氧空位浓度也较大。气敏测试结果表明,Sn-In2O3中空微米棒材料对低浓度Cl2具有较大的灵敏度,理论最低检测限低至0.37×10-9。通过气敏机理分析,其优良的Cl2气敏性能主要归因于材料的中空结构、大的比表面积和丰富的氧空位,这主要来源于MOFs模板法的制备和Sn元素的掺杂。  相似文献   

17.
采用溶胶凝胶制备了不同浓度Sm掺杂的YbBaCo4O7+δ氧吸附材料,并利用XRD分析、SEM和差热分析仪等仪器对其进行了结构、形貌、氧吸附/脱附性能分析,研究了不同浓度Sm掺杂对YbBaCo4O7+δ氧吸附/脱附性能的影响,测试结果表明:在较低掺杂浓度下,稀土元素Sm完全进入了Yb1-xSmxBaCo4O7+δ纳米粉体的晶格,Yb1-xSmxBaCo4O7+δ纳米粉体仍是单一的114相结构;稀土元素Sm掺杂对Yb1-xSmxBaCo4O7+δ纳米粉体的形貌影响较小。氧吸附/脱附性能测试结果表明:一定量的稀土元素Sm掺杂可以明显提高的YbBaCo4O7+δ纳米粉体的氧吸附性能,YbBaCo  相似文献   

18.
采用复合电沉积技术在Pb-0.3wt%Ag/α-PbO2基体上合成了WC和Co3O4颗粒共沉积的β-PbO2复合沉积层。沉积行为研究发现,WC颗粒先于Co3O4颗粒吸附于基体上,将WC颗粒与Co3O4颗粒共沉积是一种抑制当Co3O4颗粒单独共沉积于β-PbO2沉积层时发生团聚情况的有效方法。电极性能研究发现,WC或Co3O4颗粒的共沉积均会提高复合阳极的析氧电催化活性,此外,WC颗粒还有助于提高复合阳极的显微硬度和在Zn电解沉积溶液中的耐腐蚀性能。Co3O4颗粒的共沉积不利于β-PbO2相的生长,WC颗粒的共沉积对β-PbO2相的生长影响不大,两种颗粒同时共沉积有助于抑制酸性镀液中α-PbO2相的生长。   相似文献   

19.
采用静电纺丝技术结合高温煅烧方法,以乙酰丙酮钴(Co(C5H7O2)3)为前驱物,制备了由Co3O4纳米颗粒组成的多孔纳米纤维(Co3O4 NFs),其比表面积高达83 m2·g?1,并将制得的多孔Co3O4 NFs用于锂-空气电池催化剂。多孔Co3O4 NFs为电池反应提供了充足的活性位点及反应物的传输通道,有利于电池反应的顺利进行,使电池的放电容量得到极大地提高。另外,Co3O4催化剂的加入提高了电极的催化活性,较大程度降低了电池的过电位。值得注意的是,Co3O4催化剂的加入同时调控了锂-空气电池放电产物Li2O2的形貌,得到的放电产物Li2O2尺寸更小,在电极表面分布更为均匀,该形态的Li2O2在充电过程中更容易被分解,有利于提高电池的充电效率,同时电极的体积效应也可得到极大缓解。得益于以上优势,基于多孔Co3O4 NFs/炭黑Super P (Co3O4 NFs/SP)正极的锂-空气电池的电化学性能得到较大提高,50 mA·g?1电流密度下Co3O4 NFs/SP的放电容量高达10600 mA·h·g?1,电池可实现100次的充放电循环。   相似文献   

20.
β-Ga2O3晶体是一种新型宽禁带氧化物半导体材料, 本征导电性差。为了在调控导电性能的同时兼顾高的透过率和结晶性能, 离子掺杂是一种有效的途径。采用光学浮区法生长出ϕ8 mm×50 mm蓝色透明In:Ga2O3晶体, 晶体具有较高的结晶完整性。In3+离子掺杂后, β-Ga2O3晶体在红外波段出现明显的自由载流子吸收, 热导率稍有减小。室温下, In:Ga2O3晶体的电导率和载流子浓度分别为4.94×10-4 S/cm和1.005×1016 cm-3, 其值高于β-Ga2O3晶体约1个数量级。In:Ga2O3晶体电学性能对热处理敏感, 1200℃空气气氛和氩气气氛退火后电导率降低。结果表明, In3+离子掺杂能够调控β-Ga2O3晶体的导电性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号