首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用离子共沉淀技术在茶渣(Tea waste, TW)表面沉积纳米Fe3O4粒子(TW@nano-Fe3O4),用溶胶凝胶法制备茶渣@纳米Fe3O4/海藻酸钙(TW@nano-Fe3O4/CA)磁性复合微球,通过SEM、XPS、XRD、振动样品磁强计(VSM)及万能试验机对材料结构和性能进行了表征与测试,并研究了其对水溶液中亚甲基蓝(Methylene blue, MB)的吸附性能与机制。结果表明,TW@nano-Fe3O4/CA复合微球磁性响应明显,粒径为1.2~1.7 mm。微球表面粗糙、褶皱,内部为疏松多孔道结构。随TW@nano-Fe3O4含量增加,微球粒径增加,磁响应增强,但对MB的吸附量缓慢下降;TW@nano-Fe3O4/CA微球对MB的吸附动力学数据与准二级动力学方程拟合较好,等温吸附过程符合Langmuir模型,对MB的吸附过程是自发性和熵减小的放热过程。在303 K下,质量配比为TW@nano-Fe3O4∶CA=4∶1的复合微球对MB的Langmuir最大吸附量为272.5 mg·g-1,比TW提高86.7%,并具有良好的再生与循环使用性能。  相似文献   

2.
在Fe_3O_4中加入黑曲霉培养基混合培养制备了Fe_3O_4/黑曲霉磁性微球,通过静态吸附试验,考察了pH值、温度、吸附剂用量、接触时间及U(Ⅵ)初始浓度等因素对Fe_3O_4/黑曲霉磁性微球吸附U(Ⅵ)效果的影响。结果表明:pH值是影响Fe_3O_4/黑曲霉磁性微球去除U(Ⅵ)的重要因素。pH=4、温度为25℃、U(Ⅵ)的初始浓度为10mg/L、Fe_3O_4/黑曲霉磁性微球投加量为1g/L时,Fe_3O_4/黑曲霉磁性微球对U(Ⅵ)的去除率达到98.89%,在吸附15h后趋于平衡。采用SEM、能谱分析、FTIR等手段分析了Fe_3O_4/黑曲霉磁性微球吸附U(Ⅵ)的机制。SEM-EDS结果表明,Fe_3O_4/黑曲霉磁性微球成功合成且呈网状结构;FTIR结果表明,Fe_3O_4/黑曲霉磁性微球与铀发生作用的主要基团有羟基、羧基、酰胺基等。  相似文献   

3.
埃洛石纳米管热敏复合微球的制备及吸附性能   总被引:1,自引:0,他引:1  
蔡力锋  林旺  林素英  蔡丽芳  黄旭心 《功能材料》2013,44(10):1428-1430,1436
通过种子乳液聚合法在埃洛石纳米管(HNTs)表面包覆聚N-异丙基丙烯酰胺(PNIPAM),制备了HNTs/PNIPAM热敏复合微球。利用红外光谱仪(FT-IR)、粒度仪、比表面积测试仪(BET)对复合微球的结构和形貌进行了分析,通过分光光度法研究了复合微球对亚甲基蓝的吸附性能。结果表明,复合微球粒径约为1.8μm,比表面积约为18.2m2/g;其体积相转变温度约为33.6℃,具有热敏性。实验条件下,复合微球对溶液中亚甲基蓝(MB)的吸附率为99.4%,吸附MB后的复合微球在室温下再生60min后,MB解吸附趋于平衡,进一步在40℃进行解吸附时,微球中MB可以进一步释放。  相似文献   

4.
王礼  杨光  杨波  闫慧敏 《包装工程》2022,43(13):79-87
目的 为了提高海藻酸钠微球的吸附容量和脱色率。方法 以海藻酸钠为原料,共混聚乙烯醇、沸石制备得到一种海藻酸钠微球,在此基础上进行KCl改性,制备得到海藻酸钠微球吸附剂KSPZ(KCl?SA?PVA?zeolite Microsphere)。通过单因素试验得到最佳吸附条件,对吸附前、后样品进行表征,并探究其吸附机理。结果 得到KSPZ的最佳吸附条件,即pH值为9,吸附剂添加量为1 g/L,吸附时间为6 h,亚甲基蓝(Methylene blue,MB)的初始质量浓度为500 mg/L,此时吸附容量为426.63 mg/g,脱色率为85.33%。通过扫描电子显微镜观察到MB被成功吸附在KSPZ表面,其傅里叶红外光谱说明KSPZ与MB之间存在氢键和静电相互作用,且吸附过程符合准二级动力学、Langmuir型等温吸附模型,表明其吸附过程为物理扩散,并伴随着化学吸附。结论 KSPZ是一种稳定性好、脱色率高的吸附剂,为海藻酸钠复合材料在染料废水处理中的应用提供了理论指导。  相似文献   

5.
以Ti(SO42和Zn(NO32为原料,采用水热法制备TiO2-ZnO复合中空微球光催化剂。通过FTIR、XRD、SEM、紫外可见漫反射光谱(UV-Vis DRS)、XPS及N2吸附-脱附等方法对TiO2-ZnO复合光催化剂的结构和性能进行表征,并以亚甲基蓝(MB)为目标降解物,评价TiO2-ZnO复合中空微球光催化活性。结果表明,TiO2-ZnO光催化剂具有中空微球结构,粒径为1~2 μm,比表面积为30.46 m2/g。TiO2的加入可提高ZnO对光的吸收,有效降低电子空穴复合率。在高压Hg灯照射下,TiO2-ZnO复合中空微球的光催化性能均高于纯ZnO,其中Zn(NO32与Ti(SO42摩尔比为1:0.7条件下制备的TiO2-ZnO复合中空微球样品表现出较好的光催化活性,光照60 min,对MB的降解率可达95.8%,其光催化降解速率是纯ZnO的4.3倍。   相似文献   

6.
该文首先通过制备Fe3O4纳米球、MIL-100(Fe)制得了一种带有磁性的MOF材料Fe3O4@MIL-100(Fe)。然后用电子显微镜等手段对制得材料的表面积、磁性等进行了表征。最后在吸附时间以及材料重复次变化条件下,利用制得的Fe3O4@MIL-100(Fe)对亚甲基蓝进行了吸收实验。结果表明,在时间为160min时Fe3O4@MIL-100(Fe)对MB的吸附基本达到平衡,平衡时有机物的吸附量约为962.44mg/g;不同初始浓度下,吸附过程符合Langmuir吸附模型;经过7次重复后,Fe3O4@MIL-100(Fe)对MB的去除率仍有78%左右。  相似文献   

7.
采用悬浮聚合法制备了巯基功能化纳米Fe3O4 -高分子磁性复合材料(SH-nFe3O4-polymer )。通过TGA、EA、AAS、XRD、FTIR、TEM、VSM等手段对合成的SH-nFe3O4-polymer进行了组成、结构、形貌、磁性等表征,并研究了其吸附和去除水中亚甲基蓝(MB)染料的性能。结果表明:合成的SH-nFe3O4-polymer平均粒径为250~300 nm,饱和磁化强度为5.88 emu/g;SH-nFe3O4-polymer对MB的等温吸附线符合Langmuir模型,饱和吸附量为476.2 mg/g,高于四乙烯五胺功能化纳米Fe3O4-高分子磁性复合材料(TEPA-nFe3O4 -polymer,30.6 mg/g)和不含磁核的巯基功能高分子材料(SH-polymer,74.6 mg/g)。吸附热力学研究表明,SH-nFe3O4-polymer对MB的吸附过程是自发的吸热熵增过程;吸附动力学研究表明,吸附过程可在10 min内达到平衡,符合准二级动力学模型;其吸附过程的活化能为9.53 kJ/mol。SH-nFe3O4-polymer能有效去除水中的MB,其对MB的吸附机理涉及静电相互作用、π-π相互作用和疏水相互作用;磁核的存在可以形成微电场,有利于加速吸附过程的传质,确保吸附过程快速有效地进行。  相似文献   

8.
以盐酸为无机酸,采用原位聚合法制备出不同摩尔比的聚吡咯/二氧化钛(PPy/TiO_2)复合微球,以亚甲基蓝(MB)染料为目标污染物,考察了PPy/TiO_2复合微球的吸附-紫外光催化性能以及影响因素。结果表明:制备PPy/TiO_2复合微球的最佳条件为摩尔比10∶1,投加量为1.5g/L;提高反应温度有利于光催化效率的提升,但对吸附量影响小;在酸性条件下废水中MB的去除效果优于中性和碱性条件下的去除效果;影响因素优化后,经30min吸附和3h紫外光催化处理,MB的去除率可达99.1%;PPy/TiO_2复合微球对MB和孔雀石绿这2种离子染料均有较高的去除率;紫外光催化降解MB的反应符合Langmuir-Hinshelwood动力学模型;复合微球循环使用20次对MB的去除率依然可达到92.7%以上,说明PPy/TiO_2复合微球有极强的循环稳定性和应用潜力。  相似文献   

9.
Fe3O4/PNIPAM纳米复合微球的制备   总被引:1,自引:0,他引:1  
用化学共沉淀法制备Fe3O4磁性纳米粒子,以N-异丙基丙烯酰胺(NIPAM)、N,N′-亚甲基双丙烯酰胺(MBA)和偶氮二异丁腈(AIBN)为原料,用种子乳液聚合法制备了具有温敏性的Fe3O4/PNIPAM纳米复合微球。用红外光谱仪(FTIR)、透射电镜(TEM)、热重分析仪(TGA)及Zeta粒度仪(DTS)等手段对复合微球进行了表征,研究了单体(NIPAM)、交联剂(MBA)、乳化剂(SDBS)用量对复合微球粒径及磁含量的影响。结果表明:Fe3O4/PNIPAM纳米复合微球呈球形,具有温敏性,反应条件对复合微球的结构和形貌有较为显著的影响,其粒径和磁含量随着单体浓度的减少、交联剂和乳化剂用量的增加而变小。  相似文献   

10.
为了解决海藻酸钠微球溶胀性差、吸附剂和被吸附物间的传质阻力大和干燥后吸附位点少的问题,采用自由基聚合和离子交联法制备了一种热响应互穿聚合物网络水凝胶微球,并对其进行“造孔+磷酸基团功能化”改性(简称P/PF@TR-IPN)。通过单因素试验研究了铀初始浓度、ZnO的含量、投加量、pH值、温度、干扰离子和吸附时间等对U(VI)吸附的影响,探究了其再生性能。在U(VI)初始浓度为10 mg·L-1,pH值为4,P/PF@TR-IPN的投加量为0.4 g·L-1,温度为25℃的条件下,6 h内P/PF@TR-IPN对U(VI)的去除率为94.8%,比造孔微球(PF@TR-IPN)和空白微球(TR-IPN)分别提高了18.5%和30.03%。随着温度从20℃增加到50℃,温敏微球P/PF@TR-IPN的溶胀率从6.98%降至5.14%。P/PF@TR-IPN的BET比表面积比TR-IPN增大了28.5倍。当p H值为4,温度为30℃和20℃时,P/PF@TR-IPN对U(VI)的最大吸附量分别为76.99 mg·g-1和85.62...  相似文献   

11.
依次利用溶剂热法和原位沉积法制备了Ag@AgCl-Fe3O4/还原氧化石墨烯(rGO)复合材料,并对其进行结构和形貌表征。分别以罗丹明B(RhB)和Cd2+为研究对象,探讨了Ag@AgCl-Fe3O4/rGO复合材料吸附和可见光光催化印染废水中重金属离子和芳香族染料的性能,考察了Ag@AgCl-Fe3O4/rGO复合材料中rGO含量、与RhB共存的亚甲基蓝(MB)和Cd2+对RhB降解效果的影响;同时研究了溶液的初始pH值及与Cd2+共存的MB对Cd2+吸附效果的影响。结果表明:Ag@AgCl-Fe3O4/rGO复合材料对RhB的吸附量为47%,可见光照50 min的光催化降解率可达98%;Ag@AgCl-Fe3O4/rGO复合材料的吸附-光催化降解活性随rGO含量的增加而提高;废水中与RhB共存的MB使Ag@AgCl-Fe3O4/rGO复合材料对RhB的降解效率和循环性能受到一定抑制,而与RhB共存的Cd2+对RhB的降解效率和循环性能几乎没有影响。Ag@AgCl-Fe3O4/rGO复合材料对Cd2+也有良好的吸附性能,具有一定的pH值依赖性,在pH值为5时,复合材料对Cd2+的吸附量可达68 mg/g,但废水中MB染料的存在会抑制复合材料对Cd2+的吸附。   相似文献   

12.
以氧化石墨烯(GO)、纳米Fe3O4、钛酸四丁酯(TBOT)为原料,合成了磁性介孔TiO2/GO(Fe3O4@TiO2/GO)复合材料,用其处理浓度为10 mg·L-1的含U(Ⅵ)废水。研究了Fe3O4@TiO2/GO复合材料中GO含量、溶液初始pH值、Fe3O4@TiO2/GO复合材料投加量、反应时间、U(Ⅵ)初始浓度及共存离子对U(Ⅵ)吸附的影响。结果表明:在pH值为6、GO质量分数为60wt%、Fe3O4@TiO2/GO复合材料投加量为10 mg的条件下,Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附效果最佳,较同等条件下磁性介孔Fe3O4@TiO2复合材料和GO的吸附量分别高了10.99 mg·g-1和1.91 mg·g-1。Fe3O4@TiO2/GO复合材料对U(Ⅵ)的吸附180 min即达到平衡,准二级动力学模型和Freundlich吸附等温模型能很好地描述其吸附过程。解吸实验表明,经5次吸附-解吸后,U(Ⅵ)的吸附率仍高达90.86%,说明Fe3O4@TiO2/GO复合材料具有较高的循环利用性能。   相似文献   

13.
以通过溶胶-凝胶法制备的中空介孔SiO2(HMSiO2)纳米微球为骨架材料,通过反相微乳液合成使天然高分子壳聚糖(CTS)沉积在HMSiO2纳米微球表面,随后在铈离子引发下于CTS表面进行丙烯腈接枝共聚并偕胺肟化,制备HMSiO2复合壳聚糖接枝聚偕胺肟(PAO)复合纳米粒子(HMSiO2@CTS-g-PAO)。通过FTIR和XRD对HMSiO2@CTS-g-PAO复合纳米粒子的结构进行表征。采用SEM和激光粒度分析仪对HMSiO2@CTS-g-PAO复合纳米粒子的形貌和粒径进行探究。结果表明:HMSiO2@CTS-g-PAO复合纳米粒子的内层为HMSiO2,外层为CTS-g-PAO,是典型的核-壳纳米粒子。以K2Cr2O7为Cr源,探究HMSiO2@CTS-g-PAO复合纳米粒子对Cr的吸附。结果表明,HMSiO2@CTS-g-PAO复合粒子对Cr的吸附过程符合伪二级吸附动力学,主要为化学吸附,对pH=2.0、浓度为91.4 mg/L的K2Cr2O7溶液中铬的最大吸附量高达3.28 mmol/g。  相似文献   

14.
以氯化钙为交联剂,采用包埋法制备了一种果胶磁性微球吸附剂,通过红外光谱、扫描电镜、XRD、磁性分析和TGA对样品进行了表征,并考察了吸附时间、Mn2+(Cr6+)的浓度、吸附剂用量和吸附溶液的pH对果胶磁性微球吸附性能的影响。分析了果胶磁性微球分别吸附Mn(Ⅱ)和Cr(Ⅵ)的吸附动力学、吸附等温线。结果表明:果胶磁性微球对Mn(Ⅱ)和Cr(Ⅵ)的吸附达平衡分别需要4h和1.5h,饱合吸附量分别为54.35mg/g和9.62mg/g,吸附等温线较好地满足Freundlich模型和Langmuir模型,最大吸附量分别为102.04mg/g和25.45mg/g。吸附动力学符合准二级动力学模型,主要由化学吸附控制其吸附速率。  相似文献   

15.
采用溶胶-凝胶法制备磁性ZnFe2O4/埃洛石复合材料(MHNTs), 并对其吸附亚甲基蓝(MB)的性能进行研究。利用X射线衍射仪(XRD)、透射电子显微电镜(TEM)、傅里叶变换红外光谱仪(FT-IR)和振动样品磁强计(VSM)等对MHNTs的结构、形貌和磁性能进行表征, 采用静态批量平衡法对MB在MHNTs上的吸附行为和机理进行探究, 并考察了初始浓度、吸附时间和温度等因素的影响。结果表明: 复合材料中ZnFe2O4以10~30 nm尖晶石型纳米粒子沉积到埃洛石纳米管表面, 通过谢乐公式计算纳米ZnFe2O4的晶粒尺寸为19.1 nm; MHNTs具有良好的顺磁性和磁回收性。MHNTs对MB的吸附行为符合准二级动力学方程, 其吸附热力学过程符合Langmuir吸附等温线; 温度对MB在MHNTs上的吸附影响较大, 且升高温度有利于MHNTs对MB的吸附。此外, MHNTs可通过磁外场有效回收, 经过5次重复使用后MHNTs对10 mg/L MB溶液的吸附性能基本没有下降。  相似文献   

16.
采用溶胶-凝胶法、化学沉淀法和光还原法合成了具有高催化活性的Z型La-SrTiO3/Ag/Ag2O异质结光催化剂。对该光催化剂进行了SEM、TEM、XRD、XPS、UV-Vis、PL和EPR的表征分析,并考察了初始亚甲基蓝(MB)浓度、pH和H2O2浓度等相关运行参数对光催化剂催化性能的影响。结果表明,成功制备的La-SrTiO3/Ag/Ag2O复合材料对光具有较大的吸光度,可以有效抑制了光致电子-空穴对的复合。该催化剂具有较高的光催化降解活性,光照120min后对30×10-6的MB降解效率可达到98%。  相似文献   

17.
采用化学共沉淀法合成Fe3O4纳米颗粒,乳化交联法制备磁性壳聚糖微球。以环氧氯丙烷为活化剂,螯合铜离子制备了固定化Cu2+的磁性壳聚糖微球(Cu2+-IDA-MCS)为亲和介质。以乳源蛋白中发现的血管紧张素转化酶抑制肽(ACEI)Val-Ser-Leu-Pro-Glu-Try(VSLPEW)为模型分子,考察了Cu2+-IDA-MCS对VSLPEW的吸附效果。结果表明,固定化Cu2+的磁性壳聚糖微球吸附VSLPEW的最佳条件为:VSLPEW的初始浓度为2.0mg/mL,亲和介质的吸附时间为40min,吸附温度为30℃,缓冲液pH值为7.5,此时Cu2+-IDA-MCS对VSLPEW的最大吸附量达49.08mg/g。说明Cu2+-IDA-MCS是吸附VSLPEW的一种有效的亲和介质。  相似文献   

18.
利用高温热解法制备ZnCl2/AlCl3改性生物炭,将其用于吸附甲基紫染料。探究ZnCl2/AlCl3-AC投加量、溶液pH、甲基紫浓度、反应时间和吸附温度这5个因素对甲基紫吸附率的影响。利用Plackett-Burman设计联合响应面分析法,筛选优化出对甲基紫吸附率影响较为显著的因素,并探究各因素间的交互影响作用,确定ZnCl2/AlCl3-AC吸附甲基紫的最佳工艺条件。结果表明:在选取的五个因素中,对甲基紫吸附率影响显著的因素为ZnCl2/AlCl3-AC投加量>甲基紫浓度>吸附温度;其中ZnCl2/AlCl3-AC投加量和吸附温度对甲基紫吸附率影响最明显,甲基紫浓度和吸附温度影响最不显著;ZnCl2/AlCl3-AC吸附甲基紫最佳工艺条件为:活性炭投加量为47.00 mg、甲基紫溶液浓度为82.00 mg/L、吸附温度为22.90℃,pH为7、反应时间为120 min,其甲基紫吸附率可达到93.04%,与模型预测值的误差仅为3.51%。  相似文献   

19.
使用电喷法和原位生成法结合制备了磁性壳聚糖(CS)微球,通过氨基化和负载镧改性制备了具有除氟性能的磁性CS微球吸附剂。采用批量实验法对微球吸附剂的氟离子吸附行为进行了研究。结果表明:当溶液pH=9,温度高于15℃,吸附时间超过8h时,吸附基本达到平衡。对于初始氟离子浓度为20mg/L的溶液,吸附剂对氟离子的去除率能达到96%以上。饱和吸附量为(19.747~25.556)mg/g。吸附过程符合Langmuir等温方程和准二级动力学方程。吸附剂制备过程简单,耗能低且环保,具有较好的应用前景。  相似文献   

20.
本工作研究了金属有机骨架UiO-66(Zr)成型材料的制备及其对水中砷酸根离子的吸附净化。通过扫描电子显微镜(SEM)、X射线衍射(XRD)、氮气吸附和平衡吸附实验等探究了UiO-66(Zr)粉末添加量和复合凝胶微球干燥方式对其成型结构和除砷性能的影响。当UiO-66(Zr)粉末添加量为50%(质量分数)时,采用闪速冷冻法干燥得到的UiO-66(Zr)/海藻酸钠(SA)复合凝胶微球的物理化学性能最佳。进一步研究了所制备的UiO-66(Zr)/SA复合凝胶微球对水中As(V)的吸附性能,并与某商品除砷材料MN进行对比。结果表明:静态吸附条件下,As(V)初始浓度为20 mg/L、pH值为7.0时,最优成型条件下制备的UiO-66(Zr)/SA复合凝胶微球的最大吸附量为18.65 mg/g;动态填充柱吸附条件下,含1.0 g UiO-66(Zr)的复合凝胶微球材料可净化处理1.2 L初始浓度为100μg/L的含As(V)水样,出水As(V)浓度低于10μg/L,UiO-66(Zr)/SA复合凝胶微球的总体效能明显优于MN。结合笔者团队近期在UiO-66(Zr)绿色低成本批量制备方面的研究成...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号