首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
传统单相TiO2在光催化过程中存在光生载流子复合率高、能带较宽、水相中易团聚等特点。为了提高TiO2的光催化效率,利用简易水热法将氮化碳量子点(CNQDs)负载在TiO2空心球(K-T)上制成CNQDs/TiO2复合材料,并用X射线衍射(XRD)、透射电子显微镜(TEM)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)对样品进行了表征,通过光催化降解罗丹明B(RhB)、对氯苯酚(4-CP)研究了不同CNQDs负载量对CNQDs/K-T复合材料光催化性能的影响。结果表明:利用简易水热法制备了CNQDs/K-T复合材料,其表现出高光催化反应活性且具有良好的稳定性。当CNQDs负载质量为1%时,复合材料对罗丹明B(RhB)和对氯苯酚(4-CP)的光催化降解效率约为传统单相TiO2的3.0倍和3.4倍。  相似文献   

2.
以钛酸丁酯为钛源、冰醋酸为抑制剂,通过水热法合成白云母/TiO2(M/T)复合光催化材料。采用X射线衍射(XRD),拉曼光谱(Raman),扫描电子显微镜(SEM),能谱仪(EDS),N2吸附-脱附(BET),紫外-可见漫反射光谱(UV-Vis),荧光光谱(PL)对样品的物相结构、表面形貌、元素分布、孔隙结构及光学特性进行表征,并以甲基橙(MO)溶液为目标污染物,考察水热温度、水热时间、TiO2负载量对M/T复合材料光催化性能的影响。结果表明:100℃水热16 h, TiO2负载量为20%(质量分数)的M/T复合材料光催化性能最好;紫外光照射60 min,对MO的降解率达到99.62%,总有机碳(TOC)去除率为63.58%,重复使用5次,光催化活性没有明显降低,且M/T复合材料光降解MO过程符合一级反应动力学模型,最大反应速率常数kapp为0.049 min-1。  相似文献   

3.
采用一步溶胶-凝胶共缩合结合溶剂热合成技术制备出一系列介孔电气石/TiO2复合材料,表征了复合材料的相结构、形貌、孔隙率、光吸收性质以及组成结构.结果表明:制备的电气石/TiO2复合材料具有纯锐钛矿晶相、均匀的介孔结构、较大的比表面积(205~242 m2·g-1)、均匀的孔径分布(3.4~3.8 nm)以及较低的带隙能(3.0 eV).在模拟太阳光照射下,电气石/TiO2复合材料可以被成功地应用于水中有机污染物罗丹明B和诺氟沙星的降解.降解动力学研究表明:电气石的掺杂提高了TiO2的光催化量子效率,降低了TiO2的带隙能.对罗丹明B的降解,电气石掺杂量为1wt%~5wt%的电气石/TiO2复合材料表现出比纯TiO2更高的降解速率,对诺氟沙星的降解,电气石/TiO2复合材料的降解速率高于纯TiO2的.  相似文献   

4.
李燕  孙宝  王爱国  高晗 《复合材料学报》2020,37(8):1981-1988
以Ti(SO4)2和尿素为原料,采用均匀沉淀法及不同煅烧温度制备了TiO2-g-C3N4复合材料。利用XRD和SEM对g-C3N4和TiO2-g-C3N4复合材料的结构及形貌进行了表征,并以模拟太阳光为光源,甲基橙为目标降解物,对其光催化活性进行了研究。将高催化性能的TiO2-g-C3N4复合材料与水泥石表面结合制备了具有光催化性能的水泥石。结果表明:在300℃和400℃条件下煅烧制备的TiO2-g-C3N4复合材料具有牢固异质结,而在500℃条件下煅烧产生N掺杂的TiO2。其中400℃条件下煅烧所得TiO2-g-C3N4复合材料的光催化性能最好,模拟太阳光光照60 min降解率达到91%。通过拟合计算,发现400℃条件下TiO2-g-C3N4复合材料的光催化速率最快。与400℃ TiO2-g-C3N4复合材料结合的水泥石也具有较好的光催化降解性能,模拟太阳光光照240 min降解率可达到90%以上,TiO2-g-C3N4复合材料在400°C可以降低水泥石的初凝终凝时间,并提高其抗压强度。   相似文献   

5.
近年来,半导体光催化技术作为一项快速发展的新型环保技术,在降解水体中污染物和可再生清洁能源的生产领域有很大的应用前景。本文以所制备出的20 wt%类石墨烯碳氮化合物(g-C3N4)/TiO2为基质,利用水热法中纳米Ag颗粒部分氧化行为成功合成了Ag修饰异质结型Ag-Ag2O/TiO2-g-C3N4复合材料。利用X射线衍射(XRD)、扫描电子显微镜(SEM)、X射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis DRS)、光致荧光光谱(PL)、瞬态光电流响应等分析测试手段对Ag-Ag2O/TiO2-g-C3N4复合材料的晶体结构、形貌、光学性质等进行表征和分析。以亚甲基蓝溶液为目标降解物,研究了Ag-Ag2O/TiO2-g-C3N4复合材料的可见光催化性能。结果表明:在纳米Ag颗粒修饰的Ag-Ag2O/TiO2-g-C3N4复合材料中,Ag部分氧化成Ag2O;与g-C3N4的协同作用使Ag-Ag2O/TiO2-g-C3N4复合催化剂具有良好的可见光催化活性;可见光照射4 h后,Ag-Ag2O/TiO2-g-C3N4复合催化剂对亚甲基蓝的降解率接近50%。   相似文献   

6.
为了同时提高催化剂的光催化和回收能力,以聚丙烯腈(PAN)和钛酸四丁酯(TBT)作为碳纳米纤维(CNFs)和TiO2前驱体,通过静电纺丝和热处理方法制备了TiO2/CNFs复合材料,并通过SEM、XRD、Raman、UV-vis分光光度计等对TiO2/CNFs复合材料的形貌、晶体结构、光吸收性能、导电性和光催化性能进行了研究。结果表明:随TBT添加量的逐渐增多,TiO2/CNFs复合材料在热处理过程中卷曲形态逐渐消失,并且TBT在碳化过程中完全转化为锐钛矿TiO2;TiO2/CNFs复合材料光吸收边缘由纯TiO2的紫外光区扩展至可见光区,提高了催化剂对太阳光的利用率;同时,在模拟太阳光照射180 min,TiO2/CNFs复合材料对RhB的光催化降解率最大可达到95.71%,并且在连续重复使用5次后光催化降解效率仍可达到约90%。   相似文献   

7.
以钛酸四丁酯、无水氯化锌、六水氯化铁为原料,采用自组装法制备了ZnFe2O4/TiO2复合材料。采用透射电镜(TEM)、扫描电镜(SEM)、X射线衍射(XRD)、X射线光电子能谱(XPS)、漫反射光谱(DRS)、振动样品磁强(VSM)等手段对样品进行测试表征,并对ZnFe2O4/TiO2复合材料进行了光催化性能测试。结果表明:ZnFe2O4/TiO2光催化剂质量比为1∶15时具有最佳的光催化效果,100W紫外光照射下45min对活性Red 24的降解率就能达到100%,表现出优异的光催化性能,可为复合材料光催化剂的研究提供一种有效的思路。  相似文献   

8.
刘彩  刘芳  黄方  王晓娟 《无机材料学报》2021,36(11):1154-1162
光催化降解技术能够高效去除废水中的有机污染物, 具有广阔的应用前景。本研究以海藻为碳源, 采用微波水热法制备海藻基碳量子点(CDs), 并进一步合成CDs-Cu-TiO2复合材料作为可见光催化剂用于污染物降解。结果表明, 复合材料中CDs、Cu2+与TiO2紧密结合在一起, 可见光区吸收明显增强, 荧光发射效率降低。CDs与Cu2+的引入产生协同效应, 使复合材料的禁带宽度降低到2.35 eV, 并有效抑制了电子-空穴的复合。以罗丹明B为污染物模型的光催化性能实验显示, 海藻基CDs-Cu-TiO2复合材料在可见光照射下降解RhB的一级反应速率常数能够达到纯TiO2纳米颗粒的6.4倍, 150 min降解率接近100%, 是TiO2纳米颗粒的2倍。  相似文献   

9.
近年,光催化技术已被广泛应用于污水处理、CO2还原、制氢等多个领域。在光催化材料中,TiO2由于具有化学稳定性高、来源广泛、价格低廉等优点,应用最广泛。但较宽的带隙及较高的电子及空穴复合效率使TiO2的光催化性能受到极大限制。量子点(QDs)作为一种受量子约束效应影响的纳米尺度粒子,具有载流子易调控和表面位点丰富等优势。因此,研究人员采用不同方法将TiO2与QDs复合,以增强TiO2的光催化性能,获得了系列具有优异光催化性能的QDs/TiO2复合光催化材料。本文主要综述了QDs/TiO2复合光催化材料的研究进展。首先,阐述了QDs/TiO2复合光催化材料的制备方法,并就QDs对TiO2光催化性能的增强机制进行了剖析;然后,总结了QDs/TiO2复合光催化材料在有机污染物降解、制氢及CO2还原方面的应用研究进展;最后,围绕QDs/TiO2复合光催化材料现阶段研究中的关键问题及未来的研究前景进行了展望。   相似文献   

10.
以碳化植物纤维(CPF)为载体,将纳米TiO2附着于纤维表面,通过浸渍煅烧法和溶剂热法合成纳米TiO2/CPF复合光催化剂,并对其光催化性能进行了研究。通过SEM、HRTEM、XRD、EDS分析了纳米TiO2/CPF复合光催化剂的微观结构和化学组成;以光催化降解亚甲基蓝为模型反应,考察复合材料中不同纤维种类和TiO2负载量对光催化活性的影响。结果表明,在一定范围内随TiO2负载量的增加,纳米TiO2/CPF复合材料光催化性能先增强后减弱。纳米TiO2/CPF复合材料的光催化性能明显提高是由于在TiO2和碳纤维界面的良好电荷分离能力。降解染料的活性物种有超氧负离子和羟基自由基,但羟基自由基是主要物种。此外,浸渍煅烧法和溶剂热法生成的纳米TiO2在纤维表面的存在形式不同,浸渍煅烧法生成纳米TiO2薄膜,包裹纤维;而溶剂热法生成的TiO2结晶成纳米颗粒,附着于纤维表面。   相似文献   

11.
以氧化石墨烯(GO)、1, 12-二氨基十二烷(C12H28N2)、TiO2溶胶为原料,通过预插层-离子交换-煅烧法制备TiO2/石墨烯夹层结构纳米复合材料。采用XRD、Raman、FTIR、TEM、TG、UV-Vis和PL对TiO2/石墨烯夹层结构纳米复合材料进行表征,并研究不同TiO2含量的TiO2/石墨烯纳米复合材料对环丙沙星(CIP)的光催化降解性能。在煅烧过程中,TiO2的晶化和GO的还原同时进行。根据XRD和FTIR结果推断,TiO2纳米颗粒在石墨烯层间原位生成,并通过化学键固定在石墨烯上,形成了石墨烯/TiO2/石墨烯夹层结构。当TiO2的质量分数为65.5wt%时,TiO2/石墨烯复合材料表现出对环丙沙星最佳的光催化活性,150 min光照后降解率为90%高于纯TiO2  相似文献   

12.
光催化以其反应条件温和、能直接利用太阳能转化为化学能的优势,而备受科研人员的关注。如何拓展光谱吸收范围及阻止光生“电子-空穴”复合,是目前光催化研究领域的热点。本工作通过阳极氧化制备出非晶TiO2纳米管(TiO2NTs),利用机械液压法将熔融铟锡合金压入非晶TiO2中,得到In9.45Sn1/TiO2NTs,再经高温煅烧后得到ITO/TiO2NTs复合材料。实验对比了TiO2NTs、In9.45Sn1/TiO2NTs与ITO/TiO2NTs对去除水溶液中亚甲基蓝的光催化性能,在180 min光照下,ITO/TiO2NTs的降解效果最佳,降解效率达96.14%。利用紫外-可见漫反射光谱(UV-Vis DRS)研究了TiO2NTs、In9.45Sn1  相似文献   

13.
本工作合成了一种具有高吸附性能和光催化性能的表面改性竹炭/二氧化钛(SMBC/TiO2)纳米复合材料。通过湿法氧化处理廉价、天然绿色的竹炭(BC), 制备了具有良好吸附性、化学稳定性的表面改性竹炭(SMBC)。经过改性, BC表面生成大量含氧官能团, 因此SMBC粒子易分散于水中, 并且与TiO2有较强的相互作用, 确保TiO2均匀地负载在SMBC表面。SMBC/TiO2比BC/TiO2有更大的比表面积, 能提供更强的吸附性能。SMBC/TiO2的饱和吸附容量大约是BC/TiO2的1.6倍, 是TiO2的12.1倍。吸附和催化的协同作用使SMBC/TiO2复合材料降解MB具有更高的光催化活性, SMBC/TiO2光催化降解MB的速率常数分别是BC/TiO2 和TiO2的7倍和6倍。  相似文献   

14.
魏永春 《功能材料》2021,(3):3135-3139
采用溶胶-凝胶法制备了TiO2和Ag/TiO2纳米粒子,采用涂覆法制备了TiO2和Ag/TiO2纳米粒子光催化剂基板样品。使用XRD、SEM和拉曼光谱等手段,对TiO2和Ag/TiO2纳米粒子进行了晶格结构和表面形貌研究;通过UV-Vis,研究了TiO2和Ag/TiO2纳米粒子光催化剂基板样品在光催化反应器中对苯酚的光催化降解性能。结果表明,制备的TiO2和Ag/TiO2纳米粒子均为纯净的金红石相,二者表面形貌并没有明显区别,Ag单质粒子成功负载在TiO2纳米材料上;Ag单质粒子的负载,明显增强了TiO2纳米粒子对可见光的吸收,且Ag/TiO2纳米粒子薄膜对苯酚的光催化降解性能明显优于TiO2纳米粒子薄膜;在光催化降解1 h后,TiO2纳米粒子薄膜仅催化降解了溶液中30%(质量分数)的苯酚,且光催化降解出现了饱和趋势,而Ag/TiO2纳米粒子薄膜可催化降解溶液中50%(质量分数)的苯酚,且在光催化降解3 h后,仍未出现饱和趋势。  相似文献   

15.
以氧化石墨烯(GO)和钛酸四丁酯(Ti(OBu)4)作为初始反应物,采用乙醇溶剂热法合成了石墨烯/纳米TiO2复合材料,并利用XRD、FE-SEM、TEM、RAMAN和XPS等手段对石墨烯/纳米TiO2复合材料的晶体结构、形貌及元素形态等性质进行了表征,同时将复合材料应用于光催化降解甲基橙溶液,进行光催化性能评价。结果表明:Ti(OBu)4在乙醇溶剂中通过化学静电引力吸附到GO表面,经过溶剂热反应,GO被还原成石墨烯的同时,石墨烯的表面负载生长锐钛矿TiO2颗粒。随着溶剂热反应时间的延长,GO表面的活性基团减少,还原更加彻底,同时TiO2晶粒有一定的增大趋势;与纯TiO2相比,石墨烯/纳米TiO2复合材料光催化活性明显提高,石墨烯含量对复合材料的光催化活性有直接的影响。  相似文献   

16.
为了提高二氧化钛/活性碳纤维(TiO2/ACF)复合材料处理有害气体的降解率,使用Fe3+对TiO2进行改性,采用溶胶-凝胶法制备Fe3+-TiO2/ACF,通过荧光光谱(PL)、X射线衍射(XRD)、BET比表面积、扫描电镜(SEM)对材料进行性能表征,并以氨气(NH3)等气体为目标降解物,研究Fe3+-TiO2/ACF对目标降解物的降解效果。结果表明:经Fe3+掺杂改性的TiO2光催化活性显著提高,Fe3+∶Ti4+摩尔比为1∶200时,其光催化活性最高。随着Fe3+掺杂量的增加,TiO2的平均晶粒大小逐渐降低。负载Fe3+-TiO2后ACF的比表面积降低。使用Fe3+∶Ti4+(1∶200)...  相似文献   

17.
研究以聚苯乙烯(PS)微球为模板、氧化石墨烯(GO)和钛酸四丁酯(TBT)为原料, 采用溶胶-凝胶法, 利用GO与PS上的官能团和TiO2前驱体的多重配位反应, 制备了3D多级孔rGO/TiO2(PS)复合材料。通过不同手段对样品的结构和形貌进行表征, 研究了PS添加量对rGO/TiO2复合材料晶体结构、微观形貌及光催化性能的影响。分别在模拟紫外光和可见光下, 以盐酸四环素(TTCH)为目标污染物对不同PS加入量制备的3D多级孔rGO/TiO2(PS)复合材料的光催化性能进行评价, 并在模拟可见光下, 对3D多级孔rGO/TiO2(5wt%PS)复合材料进行了多次循环回收测试。结果表明: rGO/TiO2(PS)复合材料具有3D多级孔块体结构, GO作为基体的增强相通过Ti-O-C键保持多级孔刚性骨架结构的稳定。引入PS增大了rGO/TiO2(PS)复合材料的比表面积, 3D多级孔rGO/TiO2(7wt% PS)复合材料对TTCH吸附效率最高, 而3D多级孔rGO/TiO2(5wt%PS)复合材料光催化活性和稳定性最高, 且经过4次循环回收测试, 其光催化效率仍达81.02%; 模板剂PS的最佳引入量为5wt%。  相似文献   

18.
安涛  房国丽 《功能材料》2021,(3):3122-3129
TiO2/Bi2WO6异质结是当前最具潜力的一种可见光响应半导体光催化剂。以富含缺陷的TiO2纳米带为基体,采用水热法,诱导Bi2WO6在基体缺陷位点进行异质生长,从而合成具有异质结构的TiO2/Bi2WO6复合材料。利用XRD、SEM、UV-Vis等技术,分析了基体表面缺陷、Bi2WO6负载量对TiO2/Bi2WO6复合材料微观结构和性能的影响。结果表明,在基体表面引入缺陷,可以使TiO2/Bi2WO6复合材料在可见光下对有机污染物Rh B的降解速率提高约50%。Bi2WO6负载量为0.12时的TiO2/Bi2WO6复合材料,在可见光下,辐照6 min后对Rh B的降解率达99.3%,辐照30 min后对MB的降解率达99.7%,辐照15 min后对TC-HCl的降解率达87.7%。  相似文献   

19.
采用超声辅助溶胶凝胶法制备了LaFeO3颗粒,进一步以碳纳米管(CNTs)为基底和钛酸丁酯为前体,通过一步水热法煅烧合成CNTs/TiO2/LaFeO3(CTF)三元异质结光催化复合材料。通过扫描电子显微镜(SEM)、X射线衍射分析(XRD)、氮气吸附-解吸等温线(BET)、紫外-可见分光光度计(UV-Vis)、光致发光光谱(PL)等表征手段对材料的形貌与特征结构、比表面积和孔径结构以及光学特征进行了分析,并在紫外光下通过降解活性黑五(RB5)测试样品的光催化性能。结果表明,以CNTs作为载体,能够有效提升LaFeO3/TiO2复合材料的光催化性能。当CNTs在复合材料中的质量占比为5%时,150 W汞灯照射下RB5的50 min去除率可达99.5%。CNTs一方面通过增加复合材料的比较面积为催化反应的进行提供了更多的活性位点,更为重要的是,CNTs作为光生载流子传输的通道加快了电荷分离效率,提升了复合材料的降解能力和催化反应动力学进程。  相似文献   

20.
采用溶胶-凝胶法, 以氧化石墨烯(GO)、钛酸四丁酯(TBT)为原料, 聚乙烯吡咯烷酮(PVP)为结构引导剂, 柠檬酸为水解抑制剂和表面活性剂原位合成不同GO含量的介孔氧化石墨烯/二氧化钛复合材料(GO/TiO2), 再经过紫外灯辐照还原获得介孔还原氧化石墨烯/二氧化钛复合材料(RGO/TiO2)。通过X射线衍射(XRD)、透射电镜(TEM)、比表面积(BET)、紫外-可见漫反射(UV-Vis DRS)和荧光光谱(PL)对样品进行分析表征, 研究了RGO/TiO2的形貌、孔径分布情况, RGO的引入对光生电子-空穴对寿命、吸附性能、光催化性能的影响。分别在紫外光和太阳光条件下评价了复合材料的光催化性能, 并在紫外光条件下, 对催化剂进行了多次回收循环测试。测试结果表明: TiO2均匀地生长于RGO表面, RGO/TiO2为介孔材料; RGO的引入可以有效地抑制光催化剂中光生-电子空穴对的复合, 提高吸附性能和光催化性能, 7wt%RGO/TiO2显示出对甲基橙的最佳吸附效果; 5wt%RGO/TiO2对甲基橙具有最佳光催化效果和稳定的催化活性, 经过4次循环后, 紫外光照50 min, 对甲基橙的降解率仍能达到首次降解效率的90%以上。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号