首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The rapid development of microfabrication techniques creates new opportunities for applications of microchannel reactor technology in chemical reaction engineering. The extremely large surface-to-volume ratio and the short transport path in microchannels enhance heat and mass transfer dramatically, and hence provide many potential opportunities in chemical process development and intensification. Multiphase reactions involving gas/liquid reactants with a solid as a catalyst are ubiquitous in chemical and pharmaceutical industries. The hydrodynamics of the flow affects the reactor performance significantly; therefore it plays a prominent role in reactor design. For gas/liquid two-phase flow in a microchannel, the Taylor slug flow regime is the most commonly encountered flow pattern. The present study deals with the numerical simulation of the Taylor flow in a microchannel, particularly on gas and liquid slugs. A T-junction empty microchannel with varying cross-sectional width (0.25, 0.5, 0.75, 1, 2 and 3 mm) served as the model micro-reactor, and a finite volume based commercial computational fluid dynamics (CFD) package, FLUENT, was adopted for the numerical simulation. The gas and liquid slug lengths at various operating and fluid conditions were obtained and found to be in good agreement with the literature data. Several correlations in the T-junction microchannel were developed based on the simulation results. The slug flows for other geometries and inlet conditions were also studied.  相似文献   

2.
Numerical characterisation of folding flow microchannel mixers   总被引:1,自引:0,他引:1  
Micromixers have been considered in numerous recent studies with the aim of mixing different liquid streams for the common circumstance of non-inertial flow, i.e., in the Stokes flow regime. Under such conditions, the diffusion of momentum is dominant but the diffusion of species remains weak because the Schmidt number of liquids is large. Most mixers that have potential for application in the Stokes regime make use of a folding flow pattern that approximates the baker's transformation. In the work presented here, the general scaling of mixers of this type is developed from the exact equation for species transport and computations are made for a specimen mixer geometry to test the effectiveness of the resulting scaling. The scaling relation developed is found to give an excellent representation of the actual mixing characteristics of the specimen mixer over the entire range of Péclet number of practical interest. Finite volume computations are employed to solve the governing equations up to around Pe=103. At higher Péclet numbers, where finite volume numerical solution becomes inaccurate with affordable mesh sizes, the species equation is solved using a Monte Carlo method instead. Finally, the scaling relation is used to develop the design relations needed to determine the number of mixing elements, the pressure drop incurred and the Péclet number of operation to achieve a given mixture uniformity within a specified mixing time.  相似文献   

3.
研究了阵列凸起微通道内N-甲基二乙醇胺(MDEA)吸收CO2过程的气液两相传质特性。在弹状流型下,考察了气液两相流量、MDEA浓度对体积传质系数、CO2吸收效率、压力降以及能量损耗的影响。弹状气泡受到阵列凸起的挤压作用发生形变,促进了气液两相间的传质。与平滑通道相比,阵列凸起微通道在实验条件下具有更好CO2吸收效率。在相同的能量损耗时,阵列凸起微通道具有更大的体积传质系数。  相似文献   

4.
T形微通道中互不相溶两相流数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
采用摄动有限体积(PFV)算法和水平集(level set)技术对T形微通道内互不相溶两相流动进行了数值模拟研究。考察了两相界面张力和微通道壁面润湿性对流动的影响,精确地捕捉到了油水两相流动的界面。对一些典型的T形微通道油水两相流动进行了数值计算,模拟结果和实验结果吻合较好。分析总结出了微通道内两相流动过程中的一些基本规律,为微通道内的液液两相流动实验设计和工业应用提供了新的数值预测手段。  相似文献   

5.
赵亮  刘林华 《化工学报》2007,58(12):3019-3023
微通道内流体的雷诺数一般都比较低,不同浓度溶液之间的混合主要通过扩散来完成,因此需要较长的时间和距离才能混合均匀。本文数值模拟了二维闭口微通道内电渗流的流动特性,并比较了施加不同电场强度情况下,闭口微通道电渗流的混合效率。结果表明由于非线性诱导背压的存在,闭口微通道内产生了两个环形流动,增强了对流,可以有效地缩短混合时间,提高混合效率。  相似文献   

6.
Researches on two-phase transfer and reaction processes in microchannnels are important to the design of multiphase microchemical systems. In the present work, hydrodynamics and mass transfer characteristics in cocurrent gas-liquid flow through a horizontal rectangular microchannel with a hydraulic diameter of have been investigated experimentally. Liquid side volumetric mass transfer coefficients were measured by absorbing pure CO2 into water and a 0.3 M NaHCO3 / 0.3 M Na2CO3 buffer solution. Interfacial areas were determined by absorbing pure CO2 into a 1 M NaOH solution. Two-phase flow patterns and pressure drop data were also obtained and analyzed. This paper shows that two-phase frictional pressure drop in the microchannel can be well predicted by the Lockhart-Martinelli method if we use a new correlation of C value in the Chisholm's equation. Liquid side volumetric mass transfer coefficient and interfacial area as high as about and , respectively, can be achieved in the microchannel. Generally, liquid side volumetric mass transfer coefficient increases with the increasing superficial liquid or gas velocity, which can be described satisfactorily by the developed empirical correlations. A comparison of mass transfer performance among different gas-liquid contactors reveals that the gas-liquid microchannel contactor of this study can provide at least one or two orders of magnitude higher liquid side volumetric mass transfer coefficients and interfacial areas than the others.  相似文献   

7.
In this work, the computational fluid dynamics method is used to study the liquid hydrodynamics behavior in the microchannel without central insert (MC1) and the central insert microchannel (MC2), respectively. The maximum deviation between simulation and experiment is 24%. The formations of flow patterns are explained based on contours and force analysis where the flow pattern maps are established by two-phase flow rate. The effects of aqueous phase viscosity and two-phase flow rate on the characteristic sizes of each flow pattern are also explored. Specifically, four unconventional flow patterns are found in MC2, namely the unique droplet flow, the unique slug flow, the unique coarse annular flow and the unique film annular flow. Though the insert occupies part of the channel, the pressure difference in the channel is significantly reduced compared with MC1. Moreover, the insert significantly changes the formation velocity range of each flow pattern, greatly broadens the formation range of annular flow and also has an important influence on the characteristic size of the flow pattern. The organic-phase dimensionless axial size (Lo/W) and the dimensionless radial size (Do/W) of the droplet (slug) are negatively related to the aqueous-phase viscosity (μa) and flow rate (ua). The Do/W of the annular is negatively correlated with μa and positively correlated with organic-phase flow rate (uo). This study provides direct numerical evidence that the insert is key to the formation of bicontinuous phase flow pattern, as well as further strengthens our understanding of the flow characteristics and optimization design of insert microchannels.  相似文献   

8.
采用微观粒子成像系统(Micro-PIV)实验研究了6<Re<300范围内微通道内D=0.4mm圆柱的绕流特性,获得并分析了不同Re下不同高度流层的速度场、涡量场、湍流强度场及回流区漩涡结构。研究结果表明,微圆柱绕流出现漩涡的第一临界Re在10左右,随着Re的增大,尾流区涡长度和宽度增加,尾流区域增大,漩涡中心后移;由于黏性阻滞,越靠近微通道壁面,主流速度越低且分布越均匀;不同高度下回流区长度相同,远离壁面的平面尾流区漩涡中心沿流动方向后移;高涡量区与高湍流强度区分布在微圆柱两侧,说明该位置流体混合较为剧烈,随着Re的增大,涡量增加,高涡量区变窄、变长,湍流强度及高湍流强度区域增大,当Re>200,不同高度流层的湍流强度差别较小。  相似文献   

9.
10.
微通道内气液两相流空隙率与压力降对微反应器的热质传递性能有显著影响,是微反应器的重要设计参数。采用高速摄像仪和压力测量系统分别对矩形微通道内单乙醇胺水溶液化学吸收CO2过程的空隙率和压力降进行了研究,考察了弹状流下气液两相流量与化学反应速率对空隙率及压力降的影响。结果表明:当液相流量一定时,微通道内空隙率和压力降均随着气相流量的增大而增大,空隙率随化学反应速率的增大而减小,压力降随化学反应速率的增大而增大;当气相流量一定时,随着液相流量和化学反应速率的上升,微通道内空隙率下降,而压力降上升。提出了微通道内伴有化学吸收的空隙率和压力降的半理论预测模型,模型平均误差分别为15.79%和11.12%,显示了良好的预测性能。  相似文献   

11.
The functional section of a microseparator/classifier is a semicircular microchannel whose downstream end bifurcates to separate/classify the particles in a slurry [Ookawara, S., Higashi, R., Street, D., Ogawa, K., 2004a. Feasibility study on concentration of slurry and classification of contained articles by microchannel. Chemical Engineering Journal 101, 171-178 and Ookawara, S., Higashi, R., Street, D., Ogawa, K., 2004b. The Influence of channel depth on the performance of a microseparator/classifier. Kagaku Kougaku Ronbunshu 30, 135-141.]. Previous numerical studies, based on an Eulerian-Eulerian approach, showed how the particle lift force was an indispensable factor for the separation/classification [Ookawara, S., Street, D., Ogawa, K., 2004c. A practical application of the Euler-granular model to a microseparator/classifier. In: Proceedings of the Fifth International Conference on Multiphase Flow, CD-ROM, #206.]. The present numerical study, by consistently employing the Eulerian-Eulerian approach, extensively examines the development of particle concentration profiles and the effects of feed concentration at various cross-sections in a curved microchannel for De=30(Re=450). The necessary arc length for particle concentration profiles to be fully established increases with the particle decreasing size. Particles become most concentrated at the centers of secondary Dean vortices. The dimensions of concentration region depend on the particle size and the feed concentration. In spite of the small particle relaxation time in water and the laminar flow nature, steep shear rates in a microchannel cause a collision interval comparable to the relaxation time of the particles that can be separated. To characterize the effect a newly defined Stokes number is based on the shear-induced particle-particle collisions in liquid laminar flow. A concentration efficiency is also defined as the normalized ratio of the maximum concentration to the feed concentration and it is approximately 1.0 below a Stokes number of 0.1. However, beyond the Stokes number of 0.1 the concentration efficiency decreases linearly as the log of the Stokes number increases independently of the particle size. This is because the particle to particles collision in a concentrated slurry adversely influences the efficiency of the separator.  相似文献   

12.
柴磊  夏国栋  李健  周明正 《化工学报》2013,64(6):2036-2042
以空气和水为实验工质,利用IDT高速摄像仪和Nikon生物显微镜组成的可视化系统对水平放置的PDMS周期性扩缩微通道内的气液两相流型及其演变特性进行实验研究。观察到的主要流型为间歇流和分离流。对于间歇流,气体以离散形式分布在液相中或者是液体以分散形式分布在气相中,而且气相分散跟液相分散交替存在。对于分离流,气体主要沿气体进口壁侧流动,液体主要沿液体进口壁侧流动。两相中存在明显的分界面,沿流动方向界面产生波动。通过改变气液两相表观流速,得到气液两相流型分布,进而提出间歇流与分离流流型转换的准则关系式。结果表明,同一液相表观流速下,三角凹穴型微通道间歇流向分离流转变所需的气相表观流速略小于扇形凹穴微通道。  相似文献   

13.
吴春旭  李俊明 《化工学报》2018,69(7):2851-2859
基于VOF模型,模拟了R32在水力直径为50 μm的方形微通道内流动凝结时的气液两相流型演进过程,模拟涉及的流型包括环状流、喷射流、泡状流和收缩泡状流。模拟结果显示,由于沿通道周向气液界面存在曲率差异,凝结液内部存在表面张力导致的横向压力梯度,驱使凝结液流向通道壁面拐角处,减薄通道壁面中部液膜厚度。基于势能最小原理,解释了表面张力与界面黏性力主导的喷射流形成机理。小质量流率时,喷射流诱发环状流上游气液界面波动,界面波动在界面黏性力的作用下逐渐生长。这与大质量流率时,流向下游并逐渐生长的界面波动导致流型转换的机理不同。  相似文献   

14.
Characteristics of gas‐liquid two‐phase flow under elevated pressures up to 3.0 MPa in a microchannel are investigated to provide the guidance for microreactor designs relevant to industrial application. The results indicate that a strong leakage flow through the channel corners occurs although the gas bubbles block the channel. With a simplified estimation, the leakage flow is shown to increase with an increase in pressure, leading to a bubble formation shifting from transition regime to squeezing regime. During the formation process, the two‐phase dynamic interaction at the T‐junction entrance would have a significant influence on the flow in the main channel as the moving velocity of generated bubbles varies periodically with the formation cycle. Other characteristics such as bubble formation frequency, bubble and slug lengths, bubble velocities, gas hold‐up, and the specific surface area are also discussed under different system pressures. © 2013 American Institute of Chemical Engineers AIChE J, 60: 1132–1142, 2014  相似文献   

15.
周云龙  常赫 《化工学报》2018,69(10):4194-4199
基于Fluent平台,采用CLSVOF方法对滑移壁面蛇形微通道气液两相流动进行了数值计算。计算选用的方法与理论结果具有较好的一致性,同时可以表明疏水壁面会产生滑移现象,且在高度较小的微通道内滑移效果更显著,从而减小通道内流体流动阻力,实现减阻;不同壁面性质通道内流体流动情况的计算结果表明,滑移壁面对截面速度分布趋势几乎没有影响,但上下壁面疏水性不同会影响通道截面最大速度分布。此外接触角及相对粗糙度对滑移特性影响较大,合理设计壁面润湿性及微粗糙元结构可以最大限度发挥滑移现象引起的减阻效果;与无滑移壁面相比,滑移壁面微通道内传热效果更好,且随滑移速度的增大,通道换热增强。  相似文献   

16.
涡流管内流动与传热数值模拟   总被引:4,自引:1,他引:3       下载免费PDF全文
引言 涡流管具有结构简单、无运动部件、运行可靠、系统体积超小等特点,在有特殊要求冷却或制热需求的领域,有着极为广泛的应用前景[1].尽管涡流管结构极为简单,但是发生在涡流管内部的能量分离现象则极为复杂,至今仍没有一种精确的理论能够解释其能量分离机制.  相似文献   

17.
文章以树状仿生微流道结构作为蒸发器,设计一种无吸液芯结构的新型板式环路热管。通过实验的方法,研究了功率10 W热负荷时,不同充液率(30%—85%)、不同倾斜角度(0°—90°)下热管的运行特性、启动特性和热阻特性,结果表明:热管可正常运行并且充液率范围宽泛;通过不同充液率和角度的配合归结出4种运行现象(波动式稳定、保持式稳定、平台式非稳定、上升式非稳定);影响启动温度的主要因素为充液率,充液率越高,启动温度越高,热管启动越困难;热管在波动式稳定现象中的最佳充液率为30%,在保持式稳定现象中的最佳充液率为45%;影响热阻的主要因素为倾斜角度,其中最佳倾斜角度为60°,此时热管的启动温度和总热阻都最低。  相似文献   

18.
梁倩卿  卜亿峰  门卓武  马学虎 《化工进展》2021,40(11):5973-5980
微流体系统通常具备极大的比表面积、易于控制等优势,在气-液相传质、传热、反应等方面具有良好的应用前景。本文考察了6个气液相体系在矩形截面蛇形微通道中的气液两相泰勒流流动情况以及气泡和液弹的动态行为,以气泡截面形状的几何模型为基础,得到了微通道中净泄漏流的量化方程。同时发现在较大的操作区间内,蛇形微通道对泄漏流的可控性优于直形微通道。并且详细分析了不同气液相流量、液相物性(表面张力和黏度)和气泡长度对蛇形微通道主通道净泄漏流的具体影响。  相似文献   

19.
The condensation flow of the refrigerant FC-72 in a rectangular microchannel with a 1-mm hydraulic diameter is numerically studied using the volume of fluid (VOF) model. The heat transfer related to the condensation is taken into account by a thermal equilibrium model assuming the interface temperature is at saturation. The numerical method is validated against experiments from the literature and well predicts the flow patterns along the microchannel. The vapor phase in the microchannel forms a continuous column with a decreasing diameter from upstream to downstream. Slugs are periodically generated at the head of the column. Decreasing the wall cooling heat flux or increasing the flow mass flux increases the vapor column length. Waves along the interface cause necks in the column and locally increase the vapor velocity and decrease the pressure, facilitating breakage of the vapor column into slugs. The liquid temperature is close to saturation near the interface and lower downstream and in the thin liquid layer close to the cooling surface. The initial bubble size increases with increasing flow mass flux or decreasing cooling heat flux.  相似文献   

20.
In recent years, the development of CAE (Computer Aided Engineering) in polymer processing has been remarkable, and it is expected to be more realistic in viscoelastic numerical simulation, particularly in three-dimensional complex geometry. Because of the problems of computational memory capacity, CPU time, and the numerical convergence of viscoelastic flow simulation, three-dimensional viscoelastic simulation applicable to industrial flow behaviors has not yet been attempted. In this paper, we developed the numerical simulation of three-dimensional viscoelastic flow within dies using a decoupled method, streamwise integration, and penalty function methods to decrease memory, and the TME (“Transformation of Equation of Motion to the Elliptic Equation,” S. Tanoue, T. Kajiwara, and K. Funatsu, The Eleventh Annual Meeting, the Polymer Processing Society Seoul, Korea, Extended Abstracts p.439) method, which raises the stability of convergence. We confirmed the reliability of this simulation technique to compare simulation results with experimental data of the stress field at a downstream wall shear rate of 5.41s?1 within a 60° angle tapered contraction die. We compared the predictions of a viscoelastic model (Phan-Thien and Tanner model) with a pure viscosity model (Carreau model) at a downstream wall shear rate of 120s?1 and discovered a remarkable effect of viscoelasticity in the shear stress and first normal stress difference in particular in the tapered region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号