首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
以伊利石为载体、双氰胺(C2H4 N4)为类石墨氮化碳(g-C3N4)前驱体,采用液相浸渍-热聚合联合工艺制备出一种可见光响应的g-C3N4/伊利石光催化复合材料。利用XRD、FESEM、AFM、UV-Vis、BET及PL对样品的微观结构、界面特性及光学性能进行检测分析,同时考察g-C3N4/伊利石光催化复合材料在可见光照射下光催化降解环丙沙星(CIP)的效果。结果表明:相比纯g-C3N4,g-C3N4/伊利石复合材料在可见光下具有更高的光催化性能,其光催化速率是纯g-C3N4的11.26倍;伊利石与g-C3N4构成的复合结构能够有效地抑制光生载流子的复合,改善了纯g-C3N4材料的吸附性能和光催化活性。  相似文献   

2.
以尿素(CO(NH2)2)和磷酸氢二铵((NH4)2HPO4)作为原料, 通过热聚合法制备了磷(P)掺杂石墨相氮化碳(g-C3N4)材料(P-CN)。通过X射线衍射、红外光谱、X射线光电子谱、扫描电子显微镜、透射电子显微镜、紫外可见漫反射光谱和N2吸附-脱附对样品进行了表面形貌及结构表征, 通过对罗丹明B(RhB)的降解实验, 研究了样品的可见光催化性能, 对其催化机理进行了分析。结果表明, 合成过程中磷原子的掺杂会取代g-C3N4中的C原子, 从而改变g-C3N4的表面形貌和电子结构。在可见光条件下, P-CN材料表现出优异的光催化性能, 其对RhB的降解速率明显优于纯氮化碳。其中3%P-CN样品催化活性最高, 反应30 min时, RhB降解率达到96.8%。分析认为, P原子对g-C3N4中的C原子的取代使P-CN样品表面处于富电子状态, 并导致P-CN样品导带位置升高, 光电子还原性增强。这些电子与水中的溶解氧形成超氧自由基(·O2-), 从而使得光催化性能显著提高。  相似文献   

3.
提高光催化过程中电子和空穴的提取和分离速率是提高光催化剂催化性能的关键技术之一。用浓硫酸剥离体相氮化碳得到石墨相g-C3N4,采用原位生长法制备花状g-C3N4/BiOBr P-N结复合材料,研究pH值对复合材料形貌的影响。利用XRD,SEM,EDS,TEM,UV-vis, BET等测试技术对所得样品的形貌、结构进行表征,讨论样品的光催化性能。结果表明:在g-C3N4/BiOBr复合材料内g-C3N4的[002]晶面和BiOBr的[001]晶面之间形成了异质结,可加速光生电子(e-)和空穴(h+)的提取和分离。BiOBr和g-C3N4/BiOBr的禁带宽度分别为2.75,2.71 eV,复合材料的带隙减小,对可见光的吸收范围增强。BiOBr和g-C3N4/BiOBr复合材料的比表面积分别为1.27,6.43 m2/g,比表面积增大,增加催化反应活性位点。复合材料g-C3N4/BiOBr的光催化性能比纯g-C3N4和BiOBr更好,且重复使用效果佳。pH=8时制备的g-C3N4/BiOBr复合材料光催化效果最好,此时,对橙黄G、罗丹明B、甲基橙的光催化降解效率分别为91.00%,95.51%,96.72%。  相似文献   

4.
石墨相氮化碳(g-C3N4)作为一种新型非金属高聚物半导体,具有易于合成、无毒无害、耐酸碱腐蚀、环境亲和性好等性质。独特的层状结构赋予了其较高的比表面积,适中的禁带宽度给予了其较好的光催化性能,使得其在光催化领域受到了广泛的关注。然而,纯相g-C3N4存在着比表面积小、活性位点不足、载流子复合过快和氧化还原能力偏弱等缺点,制约了其光催化领域的有效应用。研究表明,使用模板诱导工艺对g-C3N4进行结构调控可以有效解决上述问题。综述了目前常用于制备石墨相氮化碳的模板法(即硬模板法、软模板法和生物模板法),扩展讨论了多相复合工艺的进展情况,并归纳总结了g-C3N4基材料在光催化降解、CO2转化和制氢等方面的应用情况。  相似文献   

5.
为了提高石墨相氮化碳光催化性能,本文以尿素、硫脲、醋酸锌为前驱体,通过氧化热剥离与共混煅烧法分别制备g-C3N4纳米片和ZnO/g-C3N4异质结复合材料,并采用TEM、FTIR、XRD、UV-Vis DRS、BET等表征手段对制备的催化剂进行结构表征。以罗丹明、大肠杆菌为探针,考察了催化剂的光催化降解性能和抑菌活性。结果表明:以尿素和硫脲为前驱体,经过氧化热剥离处理后能得到的g-C3N4 2D纳米片,其比表面积更大、光催化性能更加优异,且其对罗丹明的降解率较未剥离的g-C3N4提高了21.2%。在40 min氙灯照射下,纯g-C3N4并未表现出良好的抑菌性能,而通过ZnO复合制备的ZnO/g-C3N4异质结复合材料,在光催化降解率和抑菌活性方面均有很大提高,其中复合20%ZnO制得的ZnO异质结复合材料表现出最佳的光催化性能...  相似文献   

6.
以三聚氰胺为原料制备石墨相氮化碳(g-C3N4),加入盐酸进行水热处理得到酸活化的g-C3N4。研究了盐酸活化对g-C3N4结构、形貌及锂硫电池g-C3N4/S正极复合材料电化学性能的影响。实验结果表明:盐酸活化处理后,g-C3N4的层间距变化不显著。随着盐酸浓度增大,g-C3N4比表面积先增大后减小,当盐酸浓度为2.5wt%时,比表面积最大为86.1 m2·g-1,与未处理g-C3N4的13 m2·g-1相比提高了5~6倍;盐酸活化g-C3N4/S正极复合材料的比容量和循环性能也呈现先增大后减小的趋势,当盐酸浓度为2.5wt%时,比容量和循环性能最好,比容量为1 538 mAh·g-1,循环50次后容量保持率为77.8%,电化学性能与比表面积呈强相关性。   相似文献   

7.
g-C3N4是一种典型的聚合物半导体材料,在可见光下就能完成对半导体要求较高的光催化反应。采用基于密度泛函理论的第一性原理平面波超软赝势方法研究了单层g-C3N4、S单掺g-C3N4、Al单掺g-C3N4和S-Al共掺g-C3N4的形成能、电子结构及光学性质。结果表明:S掺杂空隙I位置、Al掺杂N2位置时,杂质原子最易掺入g-C3N4体系。与单层g-C3N4相比,掺杂后的体系均发生了晶格畸变以及红移现象,拓展了体系的光吸收范围,可推测出S、Al掺杂能够提高g-C3N4体系的光催化性。其中,S-Al共掺杂体系的光催化性是最优的,原因是共掺杂体系的分子轨道有较强的离域性,有利于提高载流子的迁移率,并且共掺杂能使单掺杂引入的深能级变浅,减少杂质能...  相似文献   

8.
以水洗高岭土为载体, 采用盐酸对g-C3N4进行质子化处理, 通过浸渍法制备了g-C3N4/高岭土复合光催化材料。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)和紫外-可见吸收光谱(UV-Vis)等手段对复合材料的晶体结构、微观形貌和光学性能进行了表征, 并以罗丹明B为目标降解物, 研究了复合材料在可见光下的光催化性能。结果表明: 当高岭土和g-C3N4的质量配比为6︰3时, g-C3N4/高岭土具有较优的光催化性能, 其光催化速率是纯g-C3N4的8.62倍; 高岭土和g-C3N4通过静电吸引力紧密结合在一起, 该复合结构能够有效地降低光生电子和空穴的复合几率, 改善了纯g-C3N4光催化材料的吸附性能, 进而有效提高了其光催化性能。  相似文献   

9.
为研究非金属离子掺杂对g-C3N4光催化性能的影响,以三聚氰胺和硼酸为前驱体,采用一步煅烧法制备了B掺杂g-C3N4光催化剂。罗丹明B(RhB)的可见光降解实验表明,当三聚氰胺和硼酸的添加比例(质量比)为10∶0.05(0.05BCN)时显示出最好的光催化性能,表现为光照RhB 30 min降解率高达100%,远高于纯g-C3N4(38%)。同时,四环素(TC)降解9 min达到100%,降解速率为纯g-C3N4的2.09倍。基于结构表征和光学性能测量,高光催化性能可归因于B原子掺杂替代引起的带隙调制。B掺杂不仅减小了带隙且可能在带隙中引入杂质态能级,这些都能导致可见光吸收的增强和光生载流子复合的抑制,从而大大提高了光催化性能。本工作提供了一种原子级水平获取非金属元素修饰g-C3N4纳米片的方法,该材料可作为一种在可见光下具有良好稳定性的RhB降解光催化剂。  相似文献   

10.
石墨相氮化碳(g-C3N4)作为一种可见光响应型半导体材料,具有稳定性高、廉价、结构与性能可调控性高等优点。随着绿色环保、无二次污染的光催化技术的不断发展,g-C3N4光催化剂逐渐成为环境与能源科学领域的研究热点。而单一的g-C3N4存在光激发电子-空穴复合过快、可见光的利用率低等缺陷导致其光催化效率较低。在众多的改性方法中,异质耦合被认为是提高g-C3N4光催化性能的有效方法。近年来,研究者通过将不同的无机半导体、贵金属、碳材料等与g-C3N4进行异质耦合,提高了光电子在光催化体系中的转移效率,拓宽了g-C3N4基光催化剂对可见光的吸收范围,并且增强了g-C3N4催化剂稳定性与结构的可调控。本文总结了异质耦合光催化剂的催化机理,综述了以g-C3N4为基础的异质耦合光催化体系的构建,探讨了g-C3N4基异质结在处理环境污染物中的研究进展。最后,对如何设计性能优异的g-C3N4基光催化剂及在光催化降解染料、有机污染物以及有毒重金属等研究方向的发展提出展望。  相似文献   

11.
为解决单相光催化材料结构和性能上的缺陷,通过二次煅烧法获得二维石墨相氮化碳g-C3N4,通过光沉积法获得Ag/g-C3N4,选择SnS2与Ag/g-C3N4通过简单的超声和蒸发溶剂的方法制备了三相复合材料SnS2-Ag/g-C3N4,成功构建了n-n型异质结,并对材料的微观形貌、相结构、光响应能力和孔隙结构等进行了详尽表征。结果表明:材料依然保留了片层状结构并构建了浪花状形貌,各相结晶度较高且界面构建良好,形成了类似三明治结构的2D-0D-2D形貌,复合材料较单相材料具有更高的比表面积和更强的可见光响应性能。当SnS2的含量为10wt%时,所合成SnS2-Ag/g-C3N4复合材料对罗丹明B的光催化降解效率达到最高的95.6%,降解速率最快且为g-C3N  相似文献   

12.
郭雄  王瑞芬  安胜利  朱杰  马润东  郭瑞华 《功能材料》2022,(11):11198-11205
以石墨相氮化碳(g-C3N4)为研究对象,针对其作为光催化剂时存在比表面积小和可见光利用率低等问题进行研究。采用超声辅助合成法,将氧化石墨烯(GO)、还原氧化石墨烯(rGO)分别与g-C3N4按一定比例进行复合,通过XRD、SEM、FT-IR、XPS、UV-Vis等表征方法对复合材料进行表征和分析,研究了其在模拟太阳光下对罗丹明B(RhB)的光催化降解性能和降解动力学。实验结果表明,所得GO/CN、rGO/CN复合光催化剂均具有与g-C3N4具有相同的相结构和更加疏松多孔的形貌,且石墨烯材料的复合可以提高g-C3N4的可见光吸收能力,并使其禁带宽度减小。由可见光光催化性能分析得出,rGO/CN2具有更强的吸附能力,30min时对RhB的吸附率高达64.79%,为同等条件下g-C3N4的5.2倍,GO/CN1.5表现出优异的光催化活性,其催化反应速率常数为9.108×10...  相似文献   

13.
为扩大BiOCl的太阳光吸收范围,获得更高效的光催化剂,本文通过水热法制备了石墨相氮化碳(g-C3N4)/BiOCl (2D/2D)复合光催化剂并对其进行详细表征。结构与形貌表征结果显示BiOCl纳米片沉积在层状g-C3N4表面,形成了2D/2D面-面复合结构;光电化学性质分析表明形成的异质结构能有效扩展光吸收频率范围,促进光生载流子分离和迁移,从而有利于光催化性能的提高。以500 W氙灯模拟太阳光源,光催化降解罗丹明B(RhB)的结果表明g-C3N4/BiOCl异质结的光催化降解活性远高于单纯的g-C3N4和BiOCl。其中9wt%g-C3N4/BiOCl表现出了最优越的光催化活性,在180 min内对RhB的降解率为94%,其表观速率常数Kapp值为g-C3N4和BiOCl的5.7和3.6倍。同时对g-C3N4/BiOCl异质结的光催化机制展开研究,结合复合催化剂电子结构和自由基捕获实验提出了在染料敏化作用下RhB的光催化降解机制。   相似文献   

14.
将自制层状石墨相氮化碳(g-C3N4)和WO3纳米片均匀混合,经煅烧制备WO3/g-C3N4复合半导体。利用XRD、SEM、TEM、UV-Vis DRS和PL对其进行表征。结果表明,g-C3N4呈现类石墨烯状片层结构,WO3为纳米片状结构,且分散在g-C3N4表面;与WO3复合后,UV-Vis吸收边发生了红移,拓宽了g-C3N4对可见光的响应。以罗丹明B(RhB)为模拟污染物,考察WO3/g-C3N4的光催化降解性能。WO3/g-C3N4质量比为1∶5时,表现出最佳的光催化活性,可见光照60 min后,RhB降解率可达到94.9%。光催化剂具有良好的稳定性,重复使用6次后,RhB的降解率依然达到88.9%。光催化机制研究表明,超氧自由基(·O2?)是光催化降解RhB的主要活性物种。   相似文献   

15.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

16.
采用水热法以酸修饰石墨相氮化碳,考察酸种类、酸用量、及水热温度对g-C3N4结构及光催化性能的影响,并以罗丹明B水溶液模拟废水,于可见光下对催化剂活性进行评价分析。利用X射线衍射(XRD)、傅里叶红外光谱仪(FT-IR)、紫外-可见-近红外分光光度计(UV-Vis)、物理吸附仪(N2-physisorption)、荧光光谱(PL)等多种表征方法进行测试。结果表明:酸修饰对氮化碳起到了氧化作用,影响了g-C3N4的能带结构,带隙能增加,光吸收边有蓝移现象。且酸处理刻蚀了体相g-C3N4,有效地增大了其比表面积,增强其暗吸附能力,并提高电子-空穴对的分离效率。优化制备条件,发现当采用浓硝酸修饰、酸用量为0.3mL、水热温度为180℃时,所得催化剂在可将光下催化效果最佳,其降解速率是体相g-C3N4的4.33倍。  相似文献   

17.
采用半封闭一步热解方法,以三聚氰胺为前驱物制备g-C3N4,然后以圆筒状硅藻土(DE)为载体,合成DE/g-C3N4复合材料。并选取天然鳞片石墨为基本原料,运用Hummers法合成了氧化石墨烯(GO),在一定量的DE/g-C3N4粉末中加入不同质量分数的GO,得到DE/g-C3N4/GO三元复合光催化材料。通过SEM、BET、EDS、XRD、FT-IR对样品的晶体结构、形貌等进行表征,研究复合材料对罗丹明B溶液的光催化降解性能。结果表明,当GO的烯掺量为5%时,DE/g-C3N4/GO在可见光下,120min时,对RhB的降解率为93.74%,分别比DE/g-C3N4和g-C3N4提高了15.05%和31.03%。  相似文献   

18.
通过溶剂热和超声搅拌合成了CeO2/BiOI/g-C3N4三相复合材料。利用XRD、SEM、TEM和UV-Vis DRS等手段对该材料的成分、结构和光学性质进行表征。制备的CeO2/BiOI/g-C3N4三相复合材料界面结构构建良好,光响应性能好,各相分布均匀且结晶程度较高。光催化降解实验表明,在可见光(λ>420 nm)下,CeO2/BiOI/g-C3N4(Ce、Bi物质的量比为2∶1,g-C3N4质量分数为5%)三相复合材料光催化降解RhB的效率达到71%,是纯相CeO2的7倍、纯相BiOI的10倍。同时光催化重复实验结果表明,光催化材料显示出良好的稳定性,经四次循环后,光催化效率基本无降低。最后探讨了复合材料的光催化机理,明确光催化实验中真正的活性物质为空穴及超氧自由基。  相似文献   

19.
以茶渣为原料,三聚氰胺为前驱体,采用高温热聚合法制得茶渣生物炭/石墨相氮化碳(TBC/g-C3N4)复合材料。采用SEM,XRD,XPS,UV-Vis DRS,PL和EIS对光催化剂的形貌、结构及光电特性进行表征,研究TBC/g-C3N4复合材料在可见光照射下光催化还原U(Ⅵ)的性能,并探讨TBC/g-C3N4复合材料光催化还原U(Ⅵ)的机理。结果表明:当TBC的质量分数为5%,初始pH值为4,催化剂用量为1 g/L时,可见光照射30 min后TBC/g-C3N4复合材料对U(Ⅵ)的去除率可达99.64%,远高于g-C3N4(58.8%)。TBC/g-C3N4复合材料循环5次后对U(Ⅵ)的去除率仍在80%以上,表现出良好的稳定性。TBC的加入使得g-C3N4禁带宽度从2.63 eV减...  相似文献   

20.
在高温热聚合制备块体石墨相氮化碳(g-C3N5)的基础上,通过液相超声剥离获得g-C3N5纳米片,利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、红外光谱(FT-IR)、X射线光电子能谱(XPS)、紫外-可见光(UV-Vis)、荧光光谱(PL)及BET比表面积对样品进行表征。结果表明:g-C3N5纳米片在可见光下还原Cr(Ⅵ)和灭活大肠杆菌(E.coli)的性能均优于块体g-C3N5。g-C3N5纳米片在30min内对Cr(Ⅵ)的还原率达到86%,反应速率常数为块体g-C3N5的1.46倍。g-C3N5纳米片在180min内将E.coli全部灭活,h+和·O-2为抗菌过程的主要活性基团,其通过氧化作用...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号