首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
陈野  张一  刘旭坡  高书燕 《功能材料》2022,53(4):4230-4236
超级电容器因其容量大、充放电速度快、循环寿命长、功率密度高、环境污染小以及工作温度范围宽等优点而被广泛关注,可应用于存储再生能量、备用电池和替代电源等众多场景,展现出巨大的应用价值和市场潜力。然而,现有超级电容器较低的能量密度限制了其应用前景,为此研究者们提出了优化电极材料以提高其能量密度的方案。基于此,该研究以生物质——塌地松为碳源,通过高温碳化和氢氧化钾活化制备出性能优异的多级孔碳材料,性能测试证实该材料具有优异的电化学性能(电容:532.0 F/g,能量密度:12.5 Wh/kg,功率密度:5 245.6 W/kg)。研究结果表明,高比表面积(3 948.6 m2/g)、多级孔结构、均匀孔径分布及杂原子掺杂有利于提高碳材料的比电容,为超级电容器电极材料的选择和制备提供了技术指导。  相似文献   

3.
生物质基碳材料具有可再生性和灵活的微观结构可调性,作为高效、廉价的超级电容器电极材料受到越来越多的关注,但原生生物质衍生炭存在有低孔隙率、低比表面积和比电容不足等缺点。电极材料的比表面积、孔隙结构和导电性等都会影响超级电容器的储能性能,故如何制造具有高比电容、快速充放电且兼具一定柔性的电极材料成为了目前的研究重点。综述了超级电容器的类别、储能机理以及生物质基碳材料的制备方法和研究现状,分析了高质量负载电极的关键性能评价参数,并对其电化学性能影响因素进行了系统讨论,未来的发展趋势是将不同种类的储能器械集成复合型能源存储器械,以满足各领域需求。复合型的能源存储器械,大大提高了超级电容器的综合性能,因此研发高效、稳定的电能存储技术对于缓解能源短缺、减少环境污染和推动可持续发展具有重要的意义。  相似文献   

4.
以废弃荔枝果壳为原料,在惰性气体保护下经高温炭化处理,分别以氢氧化钾和草酸钠为活化剂,制备了荔枝壳碳材料。首先,通过X射线衍射(XRD)、扫描电镜(SEM)、BET比表面积等表征方法分析了所制碳材料的特征光谱,然后在三电极体系[循环伏安法(CV)和恒流充放电试验(GCD)]下测试了材料的电化学性能。结果表明:该材料为储能性能较好的碳材料。当电流密度为0.5A/g时,多孔碳的比电容达到209F/g。该材料具有优异的电化学性能,作为超级电容器的电极材料具有广阔的应用前景。  相似文献   

5.
6.
超级电容器具有充放电速度快、能量密度高、循环稳定性好等优点,而电极材料决定超级电容器的电化学性能。可再生生物质经过高温炭化可制备不同微观结构的碳材料,然而,这些碳材料存在比容量低的缺点;MnO2具有高理论比电容,缺点是循环稳定差。生物质衍生碳与MnO2复合可以实现两者优势互补。首先介绍了生物质衍生碳/MnO2复合材料的制备方法,包括化学法、水热法和电沉积法。然后,按照不同生物质衍生碳的微观结构进行分类,综述了多孔碳/MnO2、碳球/MnO2、碳纤维管/MnO2、碳纳米片/MnO2和三维碳/MnO2复合材料的制备及在超级电容器中的应用性能。最后,总结了综合性能最优的生物质衍生碳/MnO2复合材料,并针对该领域存在的问题提出了其未来发展方向。  相似文献   

7.
多孔碳超级电容器具有比电容高和循坏寿命长等优点,是当前研究和应用最广泛的一类超级电容器材料。综述了多孔碳材料的不同制备方法和多样化的多孔碳材料前驱体,并介绍了掺杂石墨烯、过渡金属氧化物(TMDs)、过渡金属碳化物或氮化物(MXene)及杂原子等手段来改善碳基电极的离子传输能力,对其在电容器中的应用进行了总结。  相似文献   

8.
随着万物互联逐渐成为现实,对绿色、可持续、高稳定性储能材料的需求越来越大。生物质炭因其丰富的孔结构、大的比表面积、环境友好性和可观的经济价值而备受关注。综述了生物质炭的结构以及合成方法,并且按照不同种类总结了国内外对于生物质基电极材料的研究现状,提出了生物质炭材料发展的新趋势和新挑战,为进一步合理设计生物质炭储能材料提供了思路。  相似文献   

9.
生物质碳材料具有成本低、来源广泛、孔隙率可调可控、形貌多样、易生产、易掺入杂原子等优点,因此,生物质碳基材料的开发和应用成为现代材料科学一个非常重要的领域。将植物叶片用不同氧化剂进行水热氧化处理,600℃碳化得到生物质碳材料。水热氧化处理工艺与传统热裂解工艺相比,降低了裂解温度,极大程度保持了叶片脉络结构,得到类石墨烯的薄层碳化材料。样品通过XRD、XPS、TEM、SEM等进行表征。结果表明,用不同氧化剂水热氧化所得到的碳材料元素组成和微观结构差别较大。当氧化剂为高锰酸钾时,所得到的生物质碳材料(MnOC)既保留了叶片原有的微观孔道,又形成了新的孔隙,比表面积可达482.934 m^2/g,平均孔径为3.833 nm。从XPS、XRD分析可以看出,MnOC样品石墨化程度相对较高,并最大程度保留了N元素(原子百分比为6.5%)。TEM、AFM图像分析表明,MnOC样品呈片层结构,厚度不足2 nm,将其制备成电极片,在电流密度为1 A/g时,比电容可达191.15 F/g。  相似文献   

10.
通过三聚氯氰(TCT)与对苯二胺(PPD)反应,成功合成了基于三嗪结构制备的微孔聚合物,然后在700~1000℃的环境下对微孔材料进行煅烧。结果表明,经900℃碳化的N-CTF-900样品的电化学性能最好,当电流密度为1A/g时,比电容为264.2F/g。经过10000次充放电循环,电容保持率达91.0%,展示出良好的循环稳定性和倍率性能,可作为超级电容器的电极材料。此外,随着碳化温度的升高,样品的碳化程度、电导率、孔隙率和微孔体积均增大。  相似文献   

11.
多孔炭由于其较大的比表面积、高耐久性和独特的内部结构而被广泛应用于储能领域的电极材料,但是发展新的储能系统需要可再生、低成本和对环境友好的电极材料。而生物质作为地球上最广泛的可再生资源之一,有着巨大的开发利用价值。目前在储能领域,生物质炭基超级电容器因其优异的性能而备受研究者的青睐。本文按照炭前驱体的来源对生物质衍生炭进行了分类,重点介绍了生物质衍生炭作为超级电容器电极材料方面的最新研究成果,最后讨论了生物质衍生炭材料在建设高效能源存储系统方面所面临的挑战。  相似文献   

12.
介绍了碳材料、过渡金属氧化物材料、导电聚合物及复合材料的研究现状以及各类材料的储能机理和作为超级电容器材料的基本要求,提出了未来超级电容器材料的研究方向。  相似文献   

13.
碳化钛作为一种新兴的层状二维材料具有一些独特的物理化学性质, 近年来引起了科研工作者广泛的注意。它是由化学选择性刻蚀的方法获得, 在电化学如锂电池, 超级电容器等领域展现出极好的应用前景。目前研究中碳化钛的电极往往活性物质负载量较低, 导致面容量不佳, 从而限制了其在大规模生产中的应用。本工作受自然界中椴木结构的启发, 利用其多孔道、孔道弯曲度低、导电性好、低价环保等特点, 将碳化钛与椴木活性炭复合, 获得了一种具有高面电容且稳定的超级电容器, 该电容器在2 mV/s的扫速下具有1983 mF/cm 2的面容量, 同时活性材料负载量可以达到17.9 mg/cm 2。本研究为后续利用自然界构型材料与功能材料的复合提供了一定的借鉴。  相似文献   

14.
邹毓  周跃云 《包装学报》2024,16(3):45-51
先采用水热法再经过煅烧处理,将氧化镍均匀负载到龙舌兰多孔碳上。采用X射线衍射(XRD)、扫描电镜(SEM)、红外辐射检测等,对NiO/龙舌兰衍生多孔碳复合材料(NiO/C)的结构和形貌进行表征,并通过循环伏安和充放电测试对NiO/C的电化学性能进行研究。结果表明:NiO/C-2具有优秀的能量密度与循环稳定性,在5 A/g的电流密度下,能量密度可达22 W·h/kg;循环10 000次后,容量保持率高达91%。此外,当电流密度为1 A/g时,NiO/C-2的比电容为312 F/g;当电流密度增大到20 A/g时,比电容仍高达155 F/g 。因此,基于龙舌兰多孔碳的结构稳定性,适量的NiO负载可以提升材料的比电容和循环稳定性。  相似文献   

15.
生物质基炭气凝胶环境友好、成本低廉,不仅具有稳定性高、导电性好、比表面积大和孔隙结构可调节的特点,还兼具力学性能稳定、弹性好的优势,是制备复合材料的一种优良基底材料。近年来,研究人员利用生物质基炭气凝胶的这些特点,通过负载理论比电容较高的金属化合物、导电聚合物和导电性能良好、力学性能稳定的石墨烯等材料以及掺杂杂原子的方法开发了一系列复合材料,并将其应用在超级电容器中,取得了一定的进展。本文综述了生物质基炭气凝胶复合过渡金属化合物、导电聚合物、石墨烯以及掺杂杂原子的方法,分析了不同制备方法的优势与弊端,总结了不同种类的生物质基炭气凝胶复合材料在超级电容器领域的应用,最后针对生物质基炭气凝胶复合材料的制备及在超级电容器应用中所面临的问题,对未来发展趋势进行了展望。  相似文献   

16.
石墨烯独特的结构使其具有优异的电、光、热、强度等物理性质,是"后硅时代"的新潜力材料,因具有巨大的应用前景而成为研究的热点。首先对近10多年来国内外石墨烯的研究现状进行了简要分析,然后详细介绍了石墨烯的主要制备方法、原理、各自的特征及其应用前景,重点综述了石墨烯在超级电容器电极材料中的应用研究,最后就目前石墨烯及其在超级电容器中的应用研究的关键问题提出了个人看法和一些建议。  相似文献   

17.
本研究通过流变相反应-热解法制备了碳包覆钒酸锰锂离子电池负极材料,通过XRD、TEM和电化学测试对材料进行了表征.所制备的材料微观组织呈不规则的短圆柱形和球形,其直径分布在30~50 nm之间,短圆柱形颗粒长度在200 nm左右.在充放电电压为3.0 V到0.02 V范围内,当充放电电流为0.1 A/g时,钒酸锰负极材料首次可逆充电容量为876 mAh/g,经过100次充放电循环后,可逆充电容量为843 mAh/g;以2.0 A/g的大电流充放电时,可逆充电容量仍然保持在334 mAh/g左右,表现出较优秀的大电流充放电能力.  相似文献   

18.
近年来,生物质碳因成本低廉、易制备、理化性能优异和具有多孔结构被广泛应用于吸波领域。然而,其吸波性能仍然受较高电导率引发的不良阻抗限制。在此,使用镍(Ni)改性木棉纤维,并使用不同的碳化温度获得镍/木棉纤维衍生碳(Ni/C)复合材料。扫描电镜结果表明,随着碳化温度的升高,Ni颗粒的尺寸增加,且木棉纤维表面出现更多的缺陷结构。XRD和XPS结果证明了Ni和木棉纤维衍生碳的成功复合。Raman结果表明碳化温度的升高导致碳组分石墨化程度增加,提高了复合材料的传导损耗能力。最后,我们将复合材料与石蜡以5∶95的超低填充比例混合,Ni/C-800展现出-52.6 dB的反射损耗值和8.32 GHz的有效吸收带宽。复合材料优异的吸波性能取决于衰减能力和阻抗匹配的协同、介电损耗和磁损耗的共同作用以及大比表面积和中空多孔结构造成的多重散射能力的增强。  相似文献   

19.
能源枯竭和环境污染问题日益严重,新型可持续能源的开发迫在眉睫.超级电容器作为电化学能量存储设备,具有容量大、功率密度高、循环寿命长等优势,逐渐成为研究热点.纤维素是自然界中广泛存在的一种天然高分子化合物,具有绿色、环保、可持续、成本低的特点,制备的碳材料有独特的孔结构和大的比表面积,使其在超级电容器方面的应用成为一个主...  相似文献   

20.
李俊  王先友  黄庆华  戴春玲 《功能材料》2006,37(12):1938-1941
以间苯二酚(R)和甲醛(F)为原料,碳酸钠(C)为催化剂,制备碳气凝胶(CRF),并以KMnO4和Mn(CH3COO)2·4H2O为原料,采用了化学沉淀法制备MnO2/CRF复合材料.用N2吸附、X射线衍射(XRD)和扫描电镜(SEM)对所制备的MnO2、CRF和MnO2/CRF复合材料进行了表征,结果表明碳气凝胶具有珍珠串式的无序多孔网络结构,所制备的MnO2为纳米级颗粒,复合材料为纳米级粉体.并对不同配比的MnO2/CRF复合材料的电化学性能进行了研究.循环伏安、恒流充放电实验表明了所制备的MnO2/CRF复合电极材料具有良好的可逆性和充放电性能.当MnO2含量为60%时,MnO2与碳气凝胶复合制成的新型电极材料具有226.3F/g的比电容,比碳气凝胶电极的比电容提高了1倍.此外,对复合电极的循环寿命进行了研究,表明复合电极具有良好的循环充放电性能.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号