首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Energy Policy》2005,33(3):349-364
This study focuses on some of the programs and measures Brazil has undertaken over the past two or three decades in order to mitigate economic or environmental problems, which have also had positive effects on the reduction of the country's carbon dioxide emissions. Results show that, in the year 2000 alone, some 11% in CO2 emissions from energy use in Brazil have been reduced compared to what would have been emitted that year had the actions reviewed here not been implemented in good time. As these actions have not been motivated as a strategy to curb global climate change, if their benefits related to avoided carbon emissions are not fully appraised in the near future, chances are that these policies may be discontinued. For instance, in the case of the business-as-usual scenario drawn up by the Ministry of Mines and Energy in 2001, the discontinuity of the policies analyzed here would result in CO2 emissions 20% higher by 2020, compared to what would happen were these policies kept over the long term. Therefore, the perspective presented here spotlights some of the hidden benefits of the programs and measures underway in the country, justifying their continuation or even intensification.  相似文献   

2.
The paper examines the impact of CO2 reduction policies on the strategic planning of the energy sector. Attention is paid to the conflicts between economic and environmental goals influencing the penetration of renewable energy sources (RES). A linear programming (LP) model is applied to represent the structure of the Greek energy system. Energy flows are optimized with respect to the system's economic efficiency. The model incorporates a constraint concerning the CO2 emissions generated from the various energy production and consumption activities. The results show that a substantial reduction of CO2 emissions can be achieved through a large scale integration of RES into the energy system. Shadow prices identified by the model denote the real cost for the economy of using alternative energy forms under various environmental restrictions. They are useful to indicate the changes in the prevailing pricing mechanisms that are necessary to direct the market forces towards the desired policy goals.  相似文献   

3.
The impacts of carbon tax and complementary policies on Chinese economy   总被引:2,自引:0,他引:2  
Under the pressure of global warming, it is imperative for Chinese government to impose effective policy instruments to promote domestic energy saving and carbon emissions reduction. As one of the most important incentive-based policy instruments, carbon tax has sparked a lively controversy in China. This paper explores the impact of carbon tax on Chinese economy, as well as the cushion effects of the complementary policies, by constructing a dynamic recursive general equilibrium model. The model can describe the new equilibrium for each sequential independent period (e.g. one year) after carbon tax and the complementary policies are imposed, and thus describe the long-term impacts of the policies. The simulation results show that carbon tax is an effective policy tool because it can reduce carbon emissions with a little negative impact on economic growth; reducing indirect tax in the meantime of imposing carbon tax will help to reduce the negative impact of the tax on production and competitiveness; in addition, giving households subsidy in the meantime will help to stimulate household consumptions. Therefore, complementary policies used together with carbon tax will help to cushion the negative impacts of carbon tax on the economy. The dynamic CGE analysis shows the impact of carbon tax policy on the GDP is relatively small, but the reduction of carbon emission is relatively large.  相似文献   

4.
CO2 capture/conversion is one of the biggest challenges facing humanity. This review reports on the analysis of the research performed over the last five years on the application of carbon-based materials as supports for CO2 conversion using the photo (electro)catalytic approach. Three types of photocatalyst materials – metals, metal-oxides, non-oxides, and their combinations with carbon are presented. Our focus has been on i) carbon – based structures and their unique features that assist with photocatalysis, ii) the approaches to consider for photo (electro)catalytic CO2 conversion, iii) representative examples of different carbon allotrope supported composites for CO2 conversion, and iv) tools to perform quantitative estimation of their performance. We have provided insights into the benefits of reduced graphene oxide (rGO) based on our team's research and listed the areas where not only improvement in CO2 reduction reactions can be considered but also areas of interest in other applications where rGO can be leveraged in a beneficial manner.  相似文献   

5.
In this study we present onroad fossil fuel CO2 emissions estimated by the Vulcan Project, an effort quantifying fossil fuel CO2 emissions for the U.S. in high spatial and temporal resolution. This high-resolution data, aggregated at the state-level and classified in broad road and vehicle type categories, is compared to a commonly used national-average approach. We find that the use of national averages incurs state-level biases for road groupings that are almost twice as large as for vehicle groupings. The uncertainty for all groups exceeds the bias, and both quantities are positively correlated with total state emissions. States with the largest emissions totals are typically similar to one another in terms of emissions fraction distribution across road and vehicle groups, while smaller-emitting states have a wider range of variation in all groups. Uncertainties in reduction estimates as large as ±60% corresponding to ±0.2 MtC are found for a national-average emissions mitigation strategy focused on a 10% emissions reduction from a single vehicle class, such as passenger gas vehicles or heavy diesel trucks. Recommendations are made for reducing CO2 emissions uncertainty by addressing its main drivers: VMT and fuel efficiency uncertainty.  相似文献   

6.
This study analyzes how international climate regimes affect cost-efficiency of fuel choices in the transportation sector. The analysis is carried out with a regionalized version of the Global Energy Transition model, GET-R 6.0. Two different carbon dioxide (CO2) reduction scenarios are applied, both meeting an atmospheric CO2 concentration target of 450 ppm by the year 2100. The first scenario, “global cap” (GC), uses a global cap on CO2 emissions, and global emissions trading is allowed. In the second scenario, “regional caps” (RC), industrialized regions start to reduce their CO2 emissions by 2010 while developing regions may wait several decades and emission reductions are not tradable across regions. In this second scenario, CO2 emissions are assumed to meet an equal per capita distribution of 1.0 tC/capita, in all six regions, by 2040; emissions then follow a common reduction path, toward approximately 0.2 tC/capita by 2100. Three main results emerge from our analysis: (i) the use of biofuels in the industrialized regions is significantly higher in RC than in GC; (ii) the use of biofuels in RC actually increases the weaker (i.e., higher) the CO2 concentration target (up to 550 ppm); and (iii) biofuels never play a dominant role in the transportation sector. We find that biofuels may play a more important role in industrialized countries if these take on their responsibilities and reduce their emissions before developing countries start reducing their emissions, compared to the case in which all countries take action under a global cap and trade emission reduction regime.  相似文献   

7.
A high performance hemin and mesoporous carbon hybrid electrocatalyst for the oxygen reduction reaction (ORR) is developed by using hemin as the Fe–N-containing precursor to control the chemistry of the metal and the chemical composition of the carbon surface. As a first step, Hemin is used as the Fe–N-containing precursor to prepare the Fe–N-doped mesoporous carbon (H-MC) via a nano-casting process by using sucrose as a carbon source and mesoporous silica as a hard template. Hemin is then used as the Fe–N4-containing precursor to prepare H-MC supported hybrid catalyst. The Fe-doped and N-doped mesoporous carbons are also prepared and the catalytic properties of the prepared catalysts for ORR in alkaline media are investigated. The results show that as compared with the much more expensive Pt/C catalyst, the hybrid catalyst obtained in this work exhibits not only a higher onset potential, but also a higher current density.  相似文献   

8.
The International Maritime Organization (IMO) has recently proposed several operational and technical measures to improve shipping efficiency and reduce the greenhouse gases (GHG) emissions. The abatement potentials estimated for these measures have been further used by many organizations to project future GHG emission reductions and plot Marginal Abatement Cost Curves (MACC). However, the abatement potentials estimated for many of these measures can be highly uncertain as many of these measures are new, with limited sea trial information. Furthermore, the abatements obtained are highly dependent on ocean conditions, trading routes and sailing patterns. When the estimated abatement potentials are used for projections, these ‘input’ uncertainties are often not clearly displayed or accounted for, which can lead to overly optimistic or pessimistic outlooks. In this paper, we propose a methodology to systematically quantify and account for these input uncertainties on the overall abatement potential forecasts. We further propose improvements to MACCs to better reflect the uncertainties in marginal abatement costs and total emissions. This approach provides a fuller and more accurate picture of abatement forecasts and potential reductions achievable, and will be useful to policy makers and decision makers in the shipping industry to better assess the cost effective measures for CO2 emission reduction.  相似文献   

9.
《Energy》1999,24(1):21-30
The photocatalytic reduction of CO2 was investigated using TiO2 powders in supercritical fluid CO2. These were irradiated in a stainless steel vessel at 9.0 MPa and 35°C. After reducing the CO2 pressure to the ordinary state, pure water was added to the vessel while avoiding air contamination. No gaseous reduction products were observed. Formic acid was obtained only in aqueous solution. The optimal irradiation time for the production of formic acid was 5 h. Addition of acidic solutions rather than pure water was preferable for formic acid formation. Formic acid seems to be produced through the protonation of reaction intermediates on TiO2 powders in solutions. The CO2-reduction system described here may be of practical value for efficient CO2-conversion and fixation, storage of solar energy, and production of raw materials for the photochemical industry.  相似文献   

10.
This paper analyses the oil pricing policies for an oil-based economy within a national planning framework. It contains a total asset maximization problem in the non-oil sector and a macroeconomic model. The main conclusion is that Hotelling's r-percent rule fails to apply for an oil-based nation if the minimum-import constraint becomes binding. Therefore, the difference between the marginal revenue growth rate and the yield on domestic investment turns down when the import constraint is binding and then it goes through several cycles before it turns up as the constraint is non-binding over the planning horizon.  相似文献   

11.
We confirmed a specific copolymerization (molecular doping) method for the covalent integration of 2,4-dihydroxyoxazole (DHO) monomer within the framework of carbon nitride (CN). The obtained composites xCN/DHO reveal a sophisticated dual-phase photocatalytic activity, which can effectively reduce and oxidize the CO2 and NO2 sources in an aqueous solution and simultaneously performed the oxidation of olefin (CC) in an organic state. This momentous dual state activity is concerned with the lipophilicity elevation from the convolution of oxazole (DHO) monomer within the shell of CN semiconductor. This modulation demonstrates the probability of hydrophobic olefin molecules, escorted in the bulk of CN and associated with the oxidation of hydroxyl radicals (1OH) caused by photogenerated electrons/holes. In this approach, the olefinic compound allusively consumes the photoinduced electrons/holes through elevated CN/DHO, thus stimulating the entire photocatalytic route. Recent research provides a novel strategy for the production of solar fuels upon organic synthesis via the oxidizing capacity of photoinduced holes within free semiconductors of amphiphilic metals. Likewise, the results of the NO2 photocatalytic reaction demonstrated that molecular doping drastically reduces the oxidative capacity and improves its reducing propensity. More importantly, the CO2 reduction process supervenes into an extreme aggregation of methane (CH4) as well as carbon monoxide (CO) in the presence of co-catalyst Pt respectively. The photocatalytic results demonstrate that the copolymerized CN provide the greatest reduction/oxidation potential, which is due to its chemical oxidation phase that causes superior fluctuations in whole performance under solar irradiation.  相似文献   

12.
The development of highly efficient and visible-light responsive carbon nitride (CN) photocatalysts is desirable to address energy shortages and environmental pollution challenges. Herein, we synthesized novel 2-hydroxy-4,6-dimethylpyrimidine (HDMP) group and Ca2+ co-modified carbon nitride (CN) photocatalyst (CN-CAA) using a facile in situ copolymerization procedure employing urea and calcium acetylacetonate (CAA) as precursors. The HDMP group and Ca2+ co-modification contributed to increased electron density and modulated electronic structure, resulting in extended visible light harvesting and accelerated separation and migration of photoinduced charge carriers. Benefiting from the enhanced visible light utilization and improved photoexcited carriers separation and transportation, the CN-CAA exhibited significantly elevated visible-light-driven photocatalytic activity for CO2 reduction. This work provided a new insight into the photocatalytic performance promotion of CN through molecular engineering and metal ions incorporation co-modification.  相似文献   

13.
Ag-promoted TiO2 nanoparticles immobilized over the cordierite monolithic support for dynamic and selective photo-reduction of CO2 to CO by the use of hydrogen has been investigated. Ag-loaded TiO2 NPs synthesized by a facile sol–gel method were coated over the monolith channels by dip-coating method. The samples were characterized by XRD, Raman, FTIR, SEM, TEM, XPS, N2 adsorption–desorption, UV–Vis and PL spectroscopy. The photo-activity test of Ag-modified TiO2 NPs was conducted for dynamic photocatalytic CO2 reduction with H2 as a reductant via a reverse water gas shift (RWGS) reaction in a cell type and monolith photo-reactors. Using 5 wt. % Ag/TO2 NPs, CO2 was energetically converted to CO with a yield rate 1335 μmole g-catal.?1 h?1, a 111 fold-higher than the amount of CO produced over the pure TiO2 catalyst. More importantly, photo-activity of Ag/TiO2 catalyst for CO evolution can be improved by 209 fold using monolith photo-reactor than the cell type reactor under the same operating conditions. This enactment was evidently due to the efficient light harvesting with larger illuminated surface area inside monolith micro-channels and efficient charges separation in the presence of Ag-metal. The reusability of Ag/TiO2 NPs loaded over the monolithic support showed favorable recycling capability than the catalyst dispersed in a cell reactor. A possible reaction mechanism for this observation has been discussed in detail.  相似文献   

14.
Nitrogen-doped carbon nanotubes (NCNTs) were prepared using a floating catalyst chemical vapour deposition method. The multiwalled NCNT contains 8.4 at% nitrogen and has a dimension of 100 nm in the diameter and 10-20 nm in the wall thickness. The catalytic activity and durability of the NCNTs towards oxygen reduction reaction (ORR) were evaluated by cyclic voltammetry (CV) and rotating ring-disk electrode (RRDE) techniques in KOH solution. In addition, the effects of KOH concentration on several ORR performance indicators of the NCNT catalyst, such as the number of electrons transferred, the diffusion-limiting current density, the onset and half-wave potentials, were also examined in electrolytes of various KOH concentrations, ranging from 0.1 to 12 M. Experimental results show that NCNTs exhibited comparable activity for ORR in alkaline electrolyte as compared with commercially available Pt/C catalyst, and much higher activity than commercial Ag/C catalysts. In addition, the NCNTs showed good stability from the potential cycling test, and the concentration of KOH had significant impact on the ORR performance indicators of the NCNT catalysts.  相似文献   

15.
In this study, we explore the effect of nickel incorporation in Cu/fumed-SiO2 catalyst for CO2 reduction reaction. Two catalysts, Cu and CuNi supported on fumed silica were synthesized using a novel surface restricted combustion synthesis technique, where the combustion reaction takes place on the surface of the inert fumed-SiO2 support. An active solution consisting of a known amount of metal nitrate precursors and urea (fuel) was impregnated on fumed silica. The catalyst loading was limited to 1 wt% to ensure localized combustions on the surface of fumed-SiO2 by restricting the combustion energy density. The synthesized catalysts were tested for CO2 hydrogenation reaction using a tubular packed bed reactor between temperature 50°C and 650°C, where Cu/SiO2 showed high CO2 conversion to carbon monoxide, and the addition of Ni further improved the catalytic performance and showed some tendency for methane formation along with CO. Moreover, both the catalysts were highly stable under the reaction conditions and did not show any sign of deactivation for ~42 hours time on stream (TOS). The catalysts were characterized using X-ray diffractometer (XRD), scanning electron microscope/energy dispersive X-ray spectrometer (SEM/EDX), transmission electron microscope (TEM), and the Brunauer-Emmet-Teller (BET) surface area measurement technique to understand their structural properties and to assess the effect of CO2 conversion reaction. In situ DRIFTS was also used to investigate the reaction pathway followed on the surface of the catalysts.  相似文献   

16.
There seems to be a tendency to determine the rate of oil extraction independently of the decisions to invest the proceeds of the resource. This paper sets out a general framework whereby the two policy variables can be analysed jointly. The methodology proposed is one of optimal control theory combined with a long-run macroeconomic model. The model presented here is structured with special reference to the UK economy but it can be applied, with the necessary modifications to any industrialized economy, with flexible exchange rate.  相似文献   

17.
Electrocatalytic reduction of CO2 into syngas (CO and H2) has been recognized to be a promising approach to achieve carbon neutrality. However, producing syngas with tunable H2/CO ratios in a wide range is still challenging. Herein, nitrogen doped graphene aerogel (GA) supported both single-atomic Ni and Ni nanoparticles (NPs) with a surface atomic ratio of 1.11 were constructed by using layered double hydroxide (LDHs) and g-C3N4 as Ni and N precursors, respectively. H2 and CO are the only products of CO2 electroreduction and the ratio of H2/CO can be tuned from 0.4 to 2.5 by changing applied potentials. In addition, the catalyst exhibits a large CO Faradaic efficiency (74%) and good long-term stability (12 h) at a relatively small potential (?0.67 V vs. RHE). This study will shed a new light on the construction of bifunctional catalysts for efficient tunable syngas generation via electroreduction of CO2.  相似文献   

18.
Carbon dioxide (CO2) reduction, which is the central issue in addressing global warming, depends on the extent that clean energy can substitute for CO2 emitting coal and non-energy factors can substitute for energy factor. The purposes of this paper are to empirically investigate inter-factor/inter-fuel substitution in China and to evaluate the determinants of China's energy-related carbon intensity as well as mitigation effects of carbon tax. Considering China's rapid increase in energy consumption and the slow adjustment in substitution, the two-stage estimation method and the dynamic error correction mechanism are employed in this study. The empirical results suggest substitutability among different types of energy sources as well as substitutability among energy, labor, and capital. The magnitude of cross-price elasticities indicates that the substitutions are inelastic, which limits the scope of the Chinese government to implement substitution strategy aiming at energy conservation and environmental management. China's carbon intensity declined during 1985–2012, most of which can be attributed to labor substitution and energy price increase. However, carbon-intensive technology being embodied in China's capital investment (energy consuming equipment) has contributed to the increase in carbon intensity. A carbon tax of RMB 50/tonne could reduce 332.9 million tonnes CO2 emissions on the basis of 2012. In addition, if ignoring the feedback between inter-factor/inter-fuel substitutions, CO2 mitigation potential would be underestimated.  相似文献   

19.
20.
Electrochemical CO2 reduction reaction (CO2RR) is an efficient way in the utilization of CO2. In this work, single transition-metal (TM) atom (TM = Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn) anchored on two-dimensional (2D) Ti2CN2 are designed for CO2RR using density-functional-theory (DFT) calculation. We show that Ti2CN2 serves as an excellent substrate to support single atom catalysts (SACs), compared to Ti2CO2 and Ti2CF2. We find that the Sc, Ti and V supported on Ti2CN2 show high catalytic activities to produce CO with a low overpotential of 0.37, 0.27, and 0.23 eV, respectively. Differently, the Mn and Fe on Ti2CN2 are catalytically active for the production of HCOOH with a low overpotential of 0.32 and 0.43 eV, respectively. We further show that the negatively charged TM-Ti2CN2 can capture and activate CO2 more effectively, and the catalytic activity and selectivity can be significantly tuned by injecting extra electrons.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号