共查询到20条相似文献,搜索用时 11 毫秒
1.
Etch characteristics of MgO thin films were investigated using an inductively coupled plasma reactive ion etcher in a HBr/Ar plasma. As the concentration of HBr gas increased, the etch rate of MgO thin films gradually decreased, but the etch rate of Ti hard mask showed initial decrease and then increased with increasing HBr concentration. The etch profile of MgO films was improved with increasing HBr concentration and a high degree of anisotropy in etch profile was achieved at 30% HBr/Ar gas. Based on the etch characteristics and surface analysis by X-ray photoelectron spectroscopy, it can be concluded that the etch mechanism of MgO thin films in a HBr/Ar gas does not follow the reactive ion etch mechanism but the sputter etching mechanism with the assistance of chemical reactions on the film surfaces. 相似文献
2.
Etch characteristics of L10 FePt thin films masked with TiN films were investigated using an inductively coupled plasma (ICP) reactive ion etching in a CH3OH/Ar plasma. As the CH3OH gas was added to Ar, the etch rates of FePt thin films and TiN hard mask gradually decreased, and the etch profile of FePt films improved with high degree of anisotropy. With increasing ICP rf power and dc-bias voltage to substrate and decreasing gas pressure, the etch rate increased and the etch profile becomes vertical without any redepositions or etch residues. Based on the etch characteristics and surface analysis of the films by X-ray photoelectron spectroscopy, it can be concluded that the etch mechanism of FePt thin films in a CH3OH/Ar gas does not follow the reactive ion etch mechanism but the chemically assisted sputter etching mechanism, due to the chemical reaction of FePt film with CH3OH gas. 相似文献
3.
Inductively coupled plasma reactive ion etching of CoFeB magnetic thin films patterned with Ti hard mask was studied in a CH3OH/Ar gas mix. As the CH3OH concentration increased, the etch rates of CoFeB thin films and Ti hard mask decreased but the etch profiles improved with high degree of anisotropy. The effects of coil rf power, dc-bias voltage and gas pressure on the etch characteristics were investigated. The etch rate increased with increasing coil rf power, dc-bias voltage and decreasing gas pressure. The degree of anisotropy in the etch profile of CoFeB films improved with increasing coil rf power and dc-bias voltage. X-ray photoelectron spectroscopy revealed that the chemical compounds containing Co and Fe components were formed during the etching. However, it was expected that the formation of these compounds could not increase the etch rates of the films due to low volatile compounds despite the improvement in etch profile. 相似文献
4.
An inductively coupled plasma reactive ion etching of IrMn magnetic thin films patterned with Ti hard mask was studied in a CH3OH/Ar gas mix. As the CH3OH concentration increased, the etch rates of IrMn thin films and Ti hard mask decreased, while the etch profiles improved with high degree of anisotropy. The effects of coil rf power, dc-bias voltage to substrate and gas pressure on the etch characteristics were investigated. The etch rate increased and the etch profile improved with increasing coil rf power, dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy revealed that the chemical reaction between IrMn films and CH3OH gas occurred, leading to the clean and good etch profile with high degree of anisotropy of 90°. 相似文献
5.
Inductively coupled plasma reactive ion etching of titanium thin films patterned with a photoresist using Cl2/Ar gas was examined. The etch rates of the titanium thin films increased with increasing the Cl2 concentration but the etch profiles varied. In addition, the effects of the coil rf power, dc-bias voltage and gas pressure on the etch rate and etch profile were investigated. The etch rate increased with increasing coil rf power, dc-bias voltage and gas pressure. The degree of anisotropy in the etched titanium films improved with increasing coil rf power and dc-bias voltage and decreasing gas pressure. X-ray photoelectron spectroscopy revealed the formation of titanium compounds during etching, indicating that Ti films etching proceeds by a reactive ion etching mechanism. 相似文献
6.
Do Young Lee 《Thin solid films》2009,517(14):4047-4051
Inductively coupled plasma reactive ion etching of indium zinc oxide (IZO) thin films masked with a photoresist was performed using a Cl2/Ar gas. The etch rate of the IZO thin films increased as Cl2 gas was added to Ar gas, reaching a maximum at 60% Cl2 and decreasing thereafter. The degree of anisotropy in the etch profile improved with increasing coil rf power and dc-bias voltage. Changes in pressure had little effect on the etch profile. X-ray photoelectron spectroscopy confirmed the formation of InCl3 and ZnCl2 on the etched surface. The surface morphology of the films etched at high Cl2 concentrations was smoother than that of the films etched at low Cl2 concentrations. These results suggest that the dry etching of IZO thin films in a Cl2/Ar gas occurs according to a reactive ion etching mechanism involving ion sputtering and a surface reaction. 相似文献
7.
Effect of doping elements on the etching characteristics of doped-ZnO (Ag, Li, and Al) thin films, etched with a positive photoresist (PR) mask, and an etch process window for infinite etch selectivity were investigated by varying the CH4 flow ratio and self-bias voltage, Vdc, in inductively coupled CH4/H2/Ar plasmas. Increased doping of ZnO films decreased the etch rates significantly presumably due to lower volatility of reaction by-products of doped Li, Ag, and Al in CH4/H2/Ar plasmas. The etch rate of AZO (Al-doped ZnO) was most significantly decreased as the doping concentration is increased from 4 to 10 wt%. It was found that process window for infinite etch selectivity of the doped ZnO to the PR is closely related to a balance between deposition and removal processes of a-C:H (amorphous hydrogenated carbon) layer on the doped-ZnO surface. Measurements of optical emission of the radical species in the plasma and surface binding states by optical emission spectroscopy (OES) and X-ray photoelectron spectroscopy (XPS), respectively, implied that the chemical reaction of CH radicals with Zn atoms in doped-ZnO play an important role in determining the doped-ZnO etch rate together with an ion-enhanced removal mechanism of a-C:H layer as well as Zn(CHx)y etch by-products. 相似文献
8.
《Vacuum》2013
In this study, we carried out an investigation of the etching characteristics (etch rate, selectivity) of HfO2 thin films in the CF4/Ar inductively coupled plasma (ICP). The maximum etch rate of 54.48 nm/min for HfO2 thin films was obtained at CF4/Ar (=20:80%) gas mixing ratio. At the same time, the etch rate was measured as function of the etching parameters such as ICP RF power, DC-bias voltage, and process pressure. The X-ray photoelectron spectroscopy analysis showed an efficient destruction of the oxide bonds by the ion bombardment as well as an accumulation of low volatile reaction products on the etched surface. Based on these data, the chemical reaction was proposed as the main etch mechanism for the CF4-containing plasmas. 相似文献
9.
Inductively coupled plasma reactive ion etching of CoZrNb magnetic thin films was studied using a TiN hard mask in a Cl2/O2/Ar gas mix. The etch rates of CoZrNb films and TiN hard mask gradually decreased with increasing Cl2 or O2 gas concentrations. When O2 gas was added in the Cl2/Ar gas mix, the etch rate of TiN hard mask was suppressed effectively so that the etch selectivity of CoZrNb film to TiN hard mask was enhanced. The addition of O2 into the gas mix also led to the anisotropic etching of the CoZrNb films and it was confirmed by Auger electron spectroscopy that there were no redeposited materials on the sidewall of the etched films. Highly anisotropic etching of CoZrNb films was achieved at room temperature under the optimized etching conditions. 相似文献
10.
Jong-Chang WooTae-Kyung Ha Doo-Seung UmJuyun Park Yong-Cheol KangChang-Il Kim 《Thin solid films》2011,520(3):1141-1146
Thin films of HfAlO3, a high-k material, were etched using inductively-coupled plasma. The dry etching mechanism of the HfAlO3 thin film was studied by varying the Cl2/Ar gas mixing ratio, RF power, direct current bias voltage, and process pressure. The maximum etch rate of the HfAlO3 thin film was 16.9 nm/min at a C12/(C12 + Ar) ratio of 80%. Our results showed that the highest etch rate of the HfAlO3 thin films was achieved by reactive ion etching using Cl radicals, due to the high volatility of the metal-chlorides. Consequently, the increased chemical effect caused an increase in the etch rate of the HfAlO3 thin film. Surface analysis by x-ray photoelectron spectroscopy showed evidence that Hf, Al and O reacted with Cl and formed nonvolatile metal-oxide compounds and volatile metal-chlorides. This effect may be related to the concurrence of chemical and physical pathways in the ion-assisted chemical reaction. 相似文献
11.
Etch characteristics of magnetic tunnel junction (MTJ) stack masked with TiN films were investigated using an inductively coupled plasma reactive ion etcher in Cl2/Ar and BCl3/Ar gases for magnetic random access memory. The effect of etch gas on the etch profile of MTJ stacks was examined. As Cl2 and BCl3 concentrations increased, the etch slope of etched MTJ stack became slanted and the dimensional shrinkage was observed. A high degree of anisotropic etching of MTJ stacks was achieved using Cl2/Ar gas at the optimized etch conditions. 相似文献
12.
D.Y. Kim 《Thin solid films》2008,516(11):3512-3516
Under certain conditions during ITO etching using CH4/H2/Ar inductively coupled plasmas, the etch rate selectivity of ITO to photoresist (PR) was infinitely high because the ITO films continued to be etched, but a net deposition of the α-C:H layer occurred on the top of the PR. Analyses of plasmas and etched ITO surfaces suggested that the continued consumption of the carbon and hydrogen in the deposited α-C:H layer by their chemical reaction with In and Sn atoms in the ITO resulting in the generation of volatile metal-organic etch products and by the ion-enhanced removal of the α-C:H layer presumably play important roles in determining the ITO etch rate and selectivity. 相似文献
13.
In this study, we carried out an investigation in the etching characteristics of TiN thin films in a C12/Ar adaptive coupled plasma. The maximum etch rate of the TiN thin films was 768 nm/min at a gas mixing ratio of C12 (75%)/Ar (25%). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of the oxide bonds by the ion bombardment as well as the accumulation of low volatile reaction products on the etched surface. Field emission Auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products. 相似文献
14.
《Materials Science & Technology》2013,29(8):985-989
AbstractHysteresis, crystal structure and chemical composition of thin films deposited through reactive sputtering of titanium metal target in Ar/CH4/N2 gas mixture have been investigated. The transition from metallic to compound sputtering mode was clearly seen as the reactive gases (CH4 and N2) flowrate concentration first increased and subsequently decreased. Abrupt cathode current drop from 273 mA to reach a minimum value of 195 mA was observed upon addition of nitrogen gas from 0 to 10% flowrate concentration to the Ar/CH4 gas mixture. This was also accompanied by an abrupt change in reactive gas partial pressure. Exploration of the deposition rate and film thickness showed that it decreased from 4·5 to 1·5 nm min?1 and from 140 to 40 nm as the N2 flowrate concentration increased from 1·5 to 7·5% at 5·5%CH4 flowrate concentration respectively. X-ray diffraction and X-ray photoelectron spectroscopy analyses of the deposited films confirmed the formation of titanium carbide and carbonitride phases as the methane and nitrogen gas concentrations in the sputtering gas were increased. 相似文献
15.
采用射频磁控溅射在基片Si(100)和Fe3O4(20nm)/Si(100)上制备了钴铁氧体(CoFe2O4)薄膜,制备的薄膜在空气气氛中进行300~1000℃的退火处理,采用XRD、VSM分析了薄膜的微结构以及磁性能。结果表明,制备的钴铁氧体薄膜均具有尖晶石结构,Fe3O4缓冲层薄膜促进了钴铁氧体薄膜的结晶,但降低了钴铁氧体薄膜的垂直各向异性和垂直于膜面方向的矫顽力,而钴铁氧体薄膜的磁化强度和矩形度得到了一定的提高。 相似文献
16.
Retsuo Kawakami Kikuo Tominaga Kenji Okada Takahiro Nouda Takeshi Inaoka Atsushi Takeichi Toshiaki Fukudome Kenichi Murao 《Vacuum》2010,84(12):1393-1397
Etch damage of TiO2 thin films with the anatase phase by capacitively coupled RF Ar plasmas has been investigated. The plasma etching causes a mixed phase of anatase and rutile or the rutile phase. The effect of Ar plasma etching damage on degenerating TiO2 thin films is dependent on gas pressure and etching time. The physical etching effect at a low gas pressure (1.3 Pa) contributes to the degradation: the atomic O concentration at the thin film surface is strongly increased. At a high gas pressure (13-27 Pa) and long etching time (60 min), there are a variety of surface defects or pits, which seem to be similar to those for GaN resulting from synergy effect between particle and UV radiation from the plasmas. For the hydrophilicity, the thin film etched at the high gas pressure and a short etching time (5 min) seems to have no etch damage: its contact angle property is almost similar to that for the as-grown thin film, and is independent of the black light irradiation. This result would probably result from formation of donor-like surface defects such as oxygen vacancy. 相似文献
17.
Synthesis of nitrogen-rich carbon nitride thin films via magnetic field-assisted inductively coupled plasma sputtering 总被引:1,自引:0,他引:1
Carbon nitride (CNx) thin films were synthesized by magnetic field-assisted inductively coupled plasma (ICP) sputtering. The electron density, electron temperature and optical emission intensity of the plasma state were significantly changed by varying the external magnetic field applied. The CNx thin film with the highest nitrogen content (N/C=1.16) was obtained when the electron density was at its highest and the electron temperature at its lowest. Additionally, the optical emission from atomic nitrogen was the strongest under the same condition. 相似文献
18.
Dry etching of indium zinc oxide (IZO) thin films was performed using inductively coupled plasma reactive ion etching in a C2F6/Ar gas. The etch characteristics of IZO films were investigated as a function of gas concentration, coil rf power, dc-bias voltage to substrate, and gas pressure. As the C2F6 concentration was increased, the etch rate of the IZO films decreased and the degree of anisotropy in the etch profile also decreased. The etch profile was improved with increasing coil rf power and dc-bias voltage, and decreasing gas pressure. An X-ray photoelectron spectroscopy analysis confirmed the formation of InF3 and ZnF2 compounds on the etched surface due to the chemical reaction of IZO films with fluorine radicals. In addition, the film surfaces etched at different conditions were examined by atomic force microscopy. These results demonstrated that the etch mechanism of IZO thin films followed sputter etching with the assistance of chemical reaction. 相似文献
19.
《Vacuum》2012,86(4):403-408
In this study, we carried out an investigation in the etching characteristics of TiN thin films in a C12/Ar adaptive coupled plasma. The maximum etch rate of the TiN thin films was 768 nm/min at a gas mixing ratio of C12 (75%)/Ar (25%). At the same time, the etch rate was measured as functions of the various etching parameters. The X-ray photoelectron spectroscopy analysis showed the efficient destruction of the oxide bonds by the ion bombardment as well as the accumulation of low volatile reaction products on the etched surface. Field emission Auger electron spectroscopy analysis was used to examine the efficiency of the ion-stimulated desorption of the reaction products. 相似文献
20.
采用溶液沉积法制备不同厚度的LiMn2O4薄膜,用x射线衍射及扫描电子显微镜检测和分析薄膜的物相及形貌;采用恒电流充放电及交流阻抗技术研究LiMn2O4薄膜的电化学性质。结果表明不同厚度的LiMn2O4薄膜均匀,晶粒大小相近,晶粒尺寸在20-50nm之间。当放电电流密度为100μA/cm^2时,不同厚度的LiMn2O4薄膜比容量相差不大,其值在42-47μAh/(cm^2.μm)之间。薄膜循环性能随着薄膜厚度的增加而变差,经50次循环后,薄膜每次循环的容量损失从0.18μm的0.012%升高到1.04μm的0.16%。电化学阻抗表明不同厚度的LiMn2O4薄膜的锂离子扩散系数差别不大,数量级为10^-11cm^2/s。 相似文献