首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
在高温热聚合制备块体石墨相氮化碳(g-C3N5)的基础上,通过液相超声剥离获得g-C3N5纳米片,利用扫描电镜(SEM)、透射电镜(TEM)、X射线衍射(XRD)、红外光谱(FT-IR)、X射线光电子能谱(XPS)、紫外-可见光(UV-Vis)、荧光光谱(PL)及BET比表面积对样品进行表征。结果表明:g-C3N5纳米片在可见光下还原Cr(Ⅵ)和灭活大肠杆菌(E.coli)的性能均优于块体g-C3N5。g-C3N5纳米片在30min内对Cr(Ⅵ)的还原率达到86%,反应速率常数为块体g-C3N5的1.46倍。g-C3N5纳米片在180min内将E.coli全部灭活,h+和·O-2为抗菌过程的主要活性基团,其通过氧化作用...  相似文献   

2.
通过溶剂蒸发和二次高温煅烧石墨相碳化氮(g-C3N4)纳米片和WS2纳米片混合物构建WS2/g-C3N4异质结,该异质结保留g-C3N4和WS2主体结构的同时,在界面处形成化学键,确保该异质结的化学稳定性和热稳定性。光催化分解水制氢实验表明,WS2纳米片含量为3wt%时光催化制氢速率高达68.62 μmol/h,分别是g-C3N4纳米片和WS2纳米片的2.53倍和15.29倍,表明异质结的构建可大幅提升g-C3N4的光催化性能,循环实验表明该异质结在5次循环实验后光催化性能没有明显下降,表明该异质结的稳定性较好。光电性能测试表明异质结的构建不仅提高激发电子的转移效率,同时抑制激发电子空穴的复合率,大幅提升激发电子的利用效率,致使光催化分解水制氢速率较g-C3N4纳米片和WS2纳米片大幅提升。   相似文献   

3.
采用高温固相法合成CaMoO4∶Eu3+红色荧光粉,采用热解法制备g-C3N4蓝色荧光粉,并制备复合荧光粉g-C3N4/CaMoO4∶Eu3+。利用X射线衍射、荧光光谱分析、热猝灭分析对荧光粉进行了表征。结果表明,CaMoO4∶Eu3+红色荧光和复合荧光粉g-C3N4/CaMoO4∶Eu3的衍射峰与CaMoO4粉末标准卡PDF#85-1267的衍射峰相匹配。在393nm的激发下,g-C3N4在462nm处发蓝绿色光,CaMoO4∶Eu3+在616nm处发红色光。通过改变g-C3N4与CaMoO4∶Eu...  相似文献   

4.
光催化技术是一种极具应用前景的环境修复技术,开发高效、稳定、具有可见光响应的光催化剂是其研究的重点之一。本文采用常压溶剂热法,以1, 3, 5-三(4-氨基苯基)苯(TAPB)和2, 5-二甲氧基苯-1, 4二甲醛(DMTP)为单体合成的共轭多孔有机聚合物TAPB-DMTP POP为基底,原位负载不同比例的g-C3N4,制备g-C3N4/POPs复合光催化剂。通过XRD、FTIR、BET、TGA、UV-Vis DRS、电流-时间(i-t)和EIS等测试方法表征了g-C3N4/POPs的化学结构与光学特性。在可见光条件下,选择Cr(Ⅵ)为模型污染物探究了不同gC3N4负载量的g-C3N4/POPs光催化还原效率,并对pH值、催化剂用量和底物浓度等影响因素进一步探究。结果表明:在pH=2条件下,g-C3N4/POP-2表现出了最佳...  相似文献   

5.
以硝酸铋、氯化钠和氢氧化钠为原料用液相沉淀法制备g-C3N4/Bi12O17Cl2复合光催化剂,并用X射线衍射(XRD)、傅里叶红外光谱(FT-IR)、扫描电子显微镜(SEM)、紫外-可见漫反射光谱(UV-Vis DRS)等手段表征其组成、微观形貌和性能,以罗丹明B为模拟污染物研究了在可见光照射下g-C3N4对g-C3N4/Bi12O17Cl2复合光催化剂活性的影响及其光催化机理。结果表明,2% (质量分数) g-C3N4/Bi12O17Cl2复合光催化剂的光催化性能最好,见光90 min后对罗丹明B的降解率达到98%。  相似文献   

6.
以水洗高岭土为载体, 采用盐酸对g-C3N4进行质子化处理, 通过浸渍法制备了g-C3N4/高岭土复合光催化材料。采用X射线衍射(XRD)、场发射扫描电镜(FESEM)和紫外-可见吸收光谱(UV-Vis)等手段对复合材料的晶体结构、微观形貌和光学性能进行了表征, 并以罗丹明B为目标降解物, 研究了复合材料在可见光下的光催化性能。结果表明: 当高岭土和g-C3N4的质量配比为6︰3时, g-C3N4/高岭土具有较优的光催化性能, 其光催化速率是纯g-C3N4的8.62倍; 高岭土和g-C3N4通过静电吸引力紧密结合在一起, 该复合结构能够有效地降低光生电子和空穴的复合几率, 改善了纯g-C3N4光催化材料的吸附性能, 进而有效提高了其光催化性能。  相似文献   

7.
为了利用Fe3O4的磁响应性及石墨相C3N4(g-C3N4)优良的光催化活性,首先采用高温热聚合法,以尿素为前驱体制备g-C3N4,然后采用水热法合成了可磁分离Fe3O4/g-C3N4复合材料。利用TEM、XRD、TGA、BET和振动样品磁强计(VSM)等多种测试手段表征分析Fe3O4/g-C3N4复合材料的形貌、晶型结构、比表面积、成分、饱和磁化强度等。通过模拟太阳光下Fe3O4/g-C3N4复合材料光催化吸附降解亚甲基蓝(MB)的实验,评价了Fe3O4/g-C3N4复合材料的吸附性能及光催化性能。结果表明,可磁分离Fe3O4/g-C3N4复合材料具有较大的比表面积,约为71.89 m2/g;且具有较好的磁性,饱和磁化强度为18.79 emu/g,可实现复合材料的分离回收;光照240 min时,Fe3O4/g-C3N4复合材料对MB的去除率为56.54%。所制备的Fe3O4/g-C3N4复合材料具有优良的吸附性能、光催化活性和磁性,并可通过外加磁场进行分离与回收。  相似文献   

8.
采用半封闭一步热解方法,以三聚氰胺为前驱物制备g-C3N4,然后以圆筒状硅藻土(DE)为载体,合成DE/g-C3N4复合材料。并选取天然鳞片石墨为基本原料,运用Hummers法合成了氧化石墨烯(GO),在一定量的DE/g-C3N4粉末中加入不同质量分数的GO,得到DE/g-C3N4/GO三元复合光催化材料。通过SEM、BET、EDS、XRD、FT-IR对样品的晶体结构、形貌等进行表征,研究复合材料对罗丹明B溶液的光催化降解性能。结果表明,当GO的烯掺量为5%时,DE/g-C3N4/GO在可见光下,120min时,对RhB的降解率为93.74%,分别比DE/g-C3N4和g-C3N4提高了15.05%和31.03%。  相似文献   

9.
采用阳极氧化法制备二氧化钛纳米管(TiO2 NTs),然后在紫外光和微波辅助下引入Ag、g-C3N4制备出g-C3N4/Ag/TiO2 NTs三元复合光催化材料。用扫描电镜(SEM)、X-射线衍射(XRD)、X-射线光电子能谱(XPS)、紫外-可见漫反射光谱(UV-Vis)、光致发光(PL)等手段对g-C3N4/Ag/TiO2 NTs进行表征,研究了这种材料对西维因的降解性能。结果表明,在模拟太阳光照射下,g-C3N4/Ag/TiO2 NTs对西维因的降解率由TiO2 NTs的29.1%提高到51.8%。光催化活性的提高,与Ag表面等离子体共振效应、Ag优异的电荷传导性以及g-C3N4与TiO2 NTs界面的异质结有关。  相似文献   

10.
为了改善g-C3N4光催化还原CO2过程中的气体传质、吸附和光生电荷分离效率,分别从泡沫孔结构构筑和构建异质结两方面进行光催化材料设计。采用表面活性剂发泡法制备g-C3N4泡沫(g-C3N4 Foam),以此为基体通过化学镀铜和氢氧化处理制备g-C3N4泡沫负载Cu(OH)2纳米片(Cu(OH)2/CNF)复合材料,对其结构和光催化性能进行分析。结果表明:g-C3N4 Foam和Cu(OH)2/CNF均展现出发达的三维微米孔网络结构,这种结构可从动力学层面优化CO2在气-固催化反应中的传质和吸附,使CO2吸附容量分别达到3.97 cm3/g和3.59 cm3/g,为g-C3N...  相似文献   

11.
石墨相氮化碳(g-C3N4)作为一种新型非金属高聚物半导体,具有易于合成、无毒无害、耐酸碱腐蚀、环境亲和性好等性质。独特的层状结构赋予了其较高的比表面积,适中的禁带宽度给予了其较好的光催化性能,使得其在光催化领域受到了广泛的关注。然而,纯相g-C3N4存在着比表面积小、活性位点不足、载流子复合过快和氧化还原能力偏弱等缺点,制约了其光催化领域的有效应用。研究表明,使用模板诱导工艺对g-C3N4进行结构调控可以有效解决上述问题。综述了目前常用于制备石墨相氮化碳的模板法(即硬模板法、软模板法和生物模板法),扩展讨论了多相复合工艺的进展情况,并归纳总结了g-C3N4基材料在光催化降解、CO2转化和制氢等方面的应用情况。  相似文献   

12.
以茶渣为原料,三聚氰胺为前驱体,采用高温热聚合法制得茶渣生物炭/石墨相氮化碳(TBC/g-C3N4)复合材料。采用SEM,XRD,XPS,UV-Vis DRS,PL和EIS对光催化剂的形貌、结构及光电特性进行表征,研究TBC/g-C3N4复合材料在可见光照射下光催化还原U(Ⅵ)的性能,并探讨TBC/g-C3N4复合材料光催化还原U(Ⅵ)的机理。结果表明:当TBC的质量分数为5%,初始pH值为4,催化剂用量为1 g/L时,可见光照射30 min后TBC/g-C3N4复合材料对U(Ⅵ)的去除率可达99.64%,远高于g-C3N4(58.8%)。TBC/g-C3N4复合材料循环5次后对U(Ⅵ)的去除率仍在80%以上,表现出良好的稳定性。TBC的加入使得g-C3N4禁带宽度从2.63 eV减...  相似文献   

13.
金属-有机框架材料(MOFs)和石墨相氮化碳(g-C3N4)在产氢、CO2还原、Cr还原以及有机污染物降解方面表现出优异的光催化性能。将MOFs和g-C3N4结合构建二元或三元异质结,可以克服两种材料各自的缺点,进一步提高其材料在可见光或太阳光照射下的光催化性能。重点介绍了几种典型MOFs/g-C3N4复合材料的制备方法及其光催化性能,并展望了该研究领域发展前景和面临的挑战。  相似文献   

14.
采用球磨法制备 g-C3N4/MoS2纳米片/氧化石墨烯(GO)三元复合催化剂。运用X 射线衍射(XRD)、透射电子显微镜(TEM)、紫外-可见吸收光谱(UV-Vis)和光致激发光谱(PL)等分析手段, 对催化剂的结构、形貌和光学性能进行表征。结果表明: MoS2纳米片和g-C3N4形成异质结结构, 均匀地分散在氧化石墨烯的表面上。以罗丹明B(RhB)为模拟污染物, 研究三元复合催化剂在可见光照射下的光催化特性。结果显示: 三元复合催化剂在120 min内对RhB的降解率达到96%, 其降解动力学常数分别是g-C3N4、g-C3N4/ MoS2、g-C3N4/GO复合催化剂的3、2.1和2.8倍。根据实验结果及能带结构提出了三元复合催化剂可能的光催化机理。  相似文献   

15.
将自制层状石墨相氮化碳(g-C3N4)和WO3纳米片均匀混合,经煅烧制备WO3/g-C3N4复合半导体。利用XRD、SEM、TEM、UV-Vis DRS和PL对其进行表征。结果表明,g-C3N4呈现类石墨烯状片层结构,WO3为纳米片状结构,且分散在g-C3N4表面;与WO3复合后,UV-Vis吸收边发生了红移,拓宽了g-C3N4对可见光的响应。以罗丹明B(RhB)为模拟污染物,考察WO3/g-C3N4的光催化降解性能。WO3/g-C3N4质量比为1∶5时,表现出最佳的光催化活性,可见光照60 min后,RhB降解率可达到94.9%。光催化剂具有良好的稳定性,重复使用6次后,RhB的降解率依然达到88.9%。光催化机制研究表明,超氧自由基(·O2?)是光催化降解RhB的主要活性物种。   相似文献   

16.
基于g-C3N4构建的异质结光催化材料在降解有毒有害污染物方面体现出优良的效果。本研究通过水热法制备了一系列不同碳纳米球(Carbon nanospheres,CS)添加量的x-CS/g-C3N4 (x=4wt%、5wt%和7wt%)复合光催化剂,以氙灯光源模拟可见光,探究了x-CS/g-C3N4对酸性橙Ⅱ的光催化降解性能。结果表明:5wt% CS/g-C3N4的光催化活性最高,光催化反应150 min,酸性橙Ⅱ的降解率达到95%。表征结果表明,g-C3N4与CS具有类似的π-π共轭结构,易发生π-π堆积相互作用而有利于电子跃迁。二者复合后能有效增强g-C3N4对可见光的吸收效率,降低其表面/界面处的电荷转移电阻,显著增强载流子的传输能力。x-CS/g-C3N4可作为一种有效的可见光催化剂应用于有机染料降解,具有应用前景。   相似文献   

17.
以一步法制备的7%(质量分数)Cu-TiO2为基,利用水热法制备了不同质量分数的光催化性能优良的g-C3N4/Cu-TiO2纳米球三元复合材料。通过X射线衍射(XRD)、扫描电子显微镜(SEM)、紫外-可见漫反射光谱(UVVis DRS)等分析测试手段对样品的结构、形貌和光学性能进行表征。通过罗丹明B为模拟污染物,表征其在紫外光条件下的光催化性能,结果表明,所合成的催化剂为80~90 nm的光滑纳米球体,均匀分布在层片状的g-C3N4上,其中60%(质量分数)g-C3N4/Cu-TiO2在紫外芬顿体系(0.1 mL 30%H2O2)内,在20 min内25 mg·L-1罗丹明B降解率达到92.71%,在30 min达到100%。同时在pH范围2~8内具有同样高效的催化效果,显著提高了催化效率和适用pH范围。  相似文献   

18.
石墨相氮化碳(g-C3N4)作为一种可见光响应型半导体材料,具有稳定性高、廉价、结构与性能可调控性高等优点。随着绿色环保、无二次污染的光催化技术的不断发展,g-C3N4光催化剂逐渐成为环境与能源科学领域的研究热点。而单一的g-C3N4存在光激发电子-空穴复合过快、可见光的利用率低等缺陷导致其光催化效率较低。在众多的改性方法中,异质耦合被认为是提高g-C3N4光催化性能的有效方法。近年来,研究者通过将不同的无机半导体、贵金属、碳材料等与g-C3N4进行异质耦合,提高了光电子在光催化体系中的转移效率,拓宽了g-C3N4基光催化剂对可见光的吸收范围,并且增强了g-C3N4催化剂稳定性与结构的可调控。本文总结了异质耦合光催化剂的催化机理,综述了以g-C3N4为基础的异质耦合光催化体系的构建,探讨了g-C3N4基异质结在处理环境污染物中的研究进展。最后,对如何设计性能优异的g-C3N4基光催化剂及在光催化降解染料、有机污染物以及有毒重金属等研究方向的发展提出展望。  相似文献   

19.
为扩大BiOCl的太阳光吸收范围,获得更高效的光催化剂,本文通过水热法制备了石墨相氮化碳(g-C3N4)/BiOCl (2D/2D)复合光催化剂并对其进行详细表征。结构与形貌表征结果显示BiOCl纳米片沉积在层状g-C3N4表面,形成了2D/2D面-面复合结构;光电化学性质分析表明形成的异质结构能有效扩展光吸收频率范围,促进光生载流子分离和迁移,从而有利于光催化性能的提高。以500 W氙灯模拟太阳光源,光催化降解罗丹明B(RhB)的结果表明g-C3N4/BiOCl异质结的光催化降解活性远高于单纯的g-C3N4和BiOCl。其中9wt%g-C3N4/BiOCl表现出了最优越的光催化活性,在180 min内对RhB的降解率为94%,其表观速率常数Kapp值为g-C3N4和BiOCl的5.7和3.6倍。同时对g-C3N4/BiOCl异质结的光催化机制展开研究,结合复合催化剂电子结构和自由基捕获实验提出了在染料敏化作用下RhB的光催化降解机制。   相似文献   

20.
利用光催化剂将太阳能转化为人类可以直接利用的能量, 并用其解决地球资源的枯竭和生存环境的恶化是可再生清洁能源研究的一个方向。g-C3N4的独特结构赋予其良好的光催化性能, 使之成为光催化领域的研究热点。目前在光催化领域, g-C3N4主要用于催化污染物分解、水解制氢制氧、有机合成及氧气还原。在实际应用中, 为进一步提高g-C3N4的光催化效果, 科研工作者开发了多种改进方法, 例如物理复合改性、化学掺杂改性、微观结构调整等。本文主要论述了g-C3N4在光催化领域的应用以及光催化性能的改进方法, 简要阐述了光催化和各种改进方法的机理, 分析了目前g-C3N4在光催化领域面临的问题和挑战, 展望了g-C3N4的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号