首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
曾敏  王健农 《材料导报》2016,30(Z2):213-218
采用乙二醇为还原剂的液相还原法和后续热处理途径制备了Pt/Ir原子比1∶1的Pt-Ir合金催化剂,利用X射线衍射(XRD)、透射电子显微镜(TEM)、电感耦合等离子体质谱(ICP)、X射线光电子能谱(XPS)等方法对合金催化剂的形貌和结构进行了表征,并采用循环伏安法(CV)、线性电势扫描(LSV)等电化学方法评价了它们的电催化活性和稳定性。结果表明,经过400℃热处理的Pt-Ir/CNC-400催化剂表现出了高于商业JM催化剂的电催化性能和稳定性。其原因主要在于,Pt-Ir纳米颗粒的合金化作用使颗粒表面的电子结构和组成发生了变化,更有利于提高催化剂的催化活性。  相似文献   

2.
电催化技术是可再生能源储存和转换领域中最有吸引力的技术之一,其中贵金属纳米材料具有优异的电催化活性。贵金属在地球中的储量少且开发成本高,如何在减少贵金属用量的同时提高催化剂活性和稳定性一直是电催化应用领域的研究焦点。贵金属磷化物作为新型电催化剂因其多功能活性位点、可调的结构和组分以及新颖的物理化学性质等优点,受到了研究人员的广泛关注。与过渡金属磷化物相比,贵金属磷化物具有更高的本征活性,且在酸性条件下具有更好的稳定性。本综述介绍了近年来贵金属磷化物电催化剂的设计合成、结构调控、X射线吸收谱表征及其在电催化应用中的研究进展,据此讨论当前所面临的机遇和挑战,并展望原位同步辐射X射线表征技术在未来贵金属磷化物电催化剂研究中的应用前景。  相似文献   

3.
以聚乙烯亚胺(PEI)功能化的石墨烯(PEI-GNs)为载体,利用电化学还原法制备了Ag/PEI-GNs复合材料。运用X射线光电子能谱、X射线粉末衍射、扫描电镜等对复合材料的组成、结构、形态进行表征,结果表明,实验成功制备了Ag/PEI-GNs复合材料,且PEI-GNs改善了Ag粒子的分散性。运用电化学方法考察了PEI-GNs对Ag纳米粒子电催化性能的影响,结果表明,相对于Ag催化剂,Ag/PEI-GNs催化剂表现出更高的催化活性和稳定性,前者归因于Ag颗粒分散度高,后者是由于PEI-GNs与Ag颗粒之间的相互作用,减缓了Ag的迁移。  相似文献   

4.
以CeO2为载体和钼酸铵为原料,在70℃下,采用水热法制备了MoO3含量分别为0、5wt%、7.5wt%、10wt%、12.5wt%、15wt%和20wt%的杂化型MoO3/CeO2复合催化剂.采用X射线粉末衍射(XRD)、傅立叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、扫描电镜(SEM)和X射线能谱仪(EDS)等对所制备催化剂的结构、形貌以及表层MoO3与CeO2之间的相互作用进行分析;并以硫酸溶液水电解为目标反应,对杂化材料进行了电催化活性测试,考察MoO3含量对复合催化剂反应活性的影响.结果表明,杂化型MoO3/CeO2催化剂的电催化活性明显优于纯CeO2,当MoO3的质量含量为12.5wt%时,所制备复合催化剂的电催化活性和导电性较佳.活性提高的主要原因是MoO3在CeO2表面上的单层分散阈值在12.5wt%~15wt%之间,MoO3通过Mo O Ce化学键而牢固结合在CeO2表面,改善了杂化型MoO3/CeO2复合催化剂的表面性能.  相似文献   

5.
利用脱合金的方法制备了纳米多孔铂镍钼(NP-PtNiMo)合金纳米催化剂,通过扫描电子显微镜(SEM)、能量色散X射线光谱仪(EDX)、X射线衍射仪(XRD)和电化学测试的方法对NP-PtNiMo合金纳米催化剂的表面形貌、成分、物相和电催化性能进行了表征。运用循环伏安法(CV)和恒电位极化评价了NP-PtNiMo合金纳米催化剂在室温下对甲醇的电催化氧化性能。结果表明,NP-PtNiMo合金纳米催化剂比商业Pt/C催化剂具有更好的电催化氧化甲醇的性能,更好的电催化稳定性以及更好的抗CO中毒的能力。  相似文献   

6.
修饰和改良载体是改善质子交换膜燃料电池阴极铂基催化剂性能的主要途径。以铁氮(FeN)掺杂活性炭(Black Pearl 2000,BP)为载体,获得负载型铂基催化剂。使用电化学方法对催化剂的氧还原反应活性以及稳定性进行测试,采用X射线衍射仪、比表面积和孔径分布测试、透射电子显微镜、X射线光电子能谱等分析手段对载体及催化剂结构进行表征。结果表明:Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位均为0.94 V,具有相当的氧还原反应初始活性;老化测试后,Pt/FeN-BP催化剂与商业Pt/C催化剂的起始电位损失分别约为10,30 mV,半波电位损失分别约为5,60 mV,Pt/FeN-BP催化剂的稳定性明显优于商业Pt/C催化剂。这是因为,铁氮掺杂碳载体具有适中的比表面积和孔径大小,Pt颗粒在载体上以小粒径的状态存在且老化测试后Pt颗粒无团聚现象,以及载体与Pt颗粒之间可能存在一定的相互作用。  相似文献   

7.
采用硬模板法制备了介孔碳化钨(m-WC), 进一步还原铂的前驱体(H2PtCl6)得到Pt/m-WC催化剂。采用X射线粉末衍射(XRD)、透射电子显微镜(TEM)和X射线光电子能谱(XPS)等测试手段对样品的物相、结构和形貌进行了表征。结果表明, 所制得的m-WC载体为单一的碳化钨相, 孔径为10~20 nm, Pt/m-WC催化剂中Pt的粒径约为3.4 nm, 主要以金属态形式存在, 相对比较均一的Pt纳米粒子均匀地分散在载体的表面和孔道中。电化学测试结果表明, 与普通WC载Pt催化剂(Pt/c-WC)相比, Pt/m-WC催化剂具有较大的电化学活性表面积, 对甲醇呈现出更高的电催化氧化活性和更好的稳定性。  相似文献   

8.
采用催化裂解法制备了多孔碳,将其作为催化剂载体,利用液相还原和真空热处理工艺制备出PtIrFe/C三元合金催化剂。采用X射线衍射、透射电子显微镜等手段对样品的结构形貌进行表征。使用电化学测试手段研究了不同热处理温度对其催化性能的影响。实验结果表明,热处理带来的合金化作用使催化剂的催化活性和耐久性得到了极大的提高。经过700℃热处理的样品,其面积比活性和质量比活性分别是传统商业Pt/C催化剂的3~4倍。  相似文献   

9.
高活性、低沉本的阴极氧还原催化剂是目前质子交换膜燃料电池的重要研究内容之一。考察了FeN/C作为氧还原催化剂的催化性能,研究氨气气氛下的二次热处理对催化剂氧还原催化活性与稳定性的影响。使用X射线衍射、比表面积和孔径分布测试、透射电子显微镜等方法对催化剂的结构进行表征,使用线性扫描伏安法对催化剂的氧还原活性进行测试。结果表明,经二次热处理后,催化剂表现出更好的氧还原催化活性及稳定性。催化剂在二次热处理后,具有更高的比表面积(931.2 m~2/g)、较高的表面氮含量(1.67%(原子分数))、以及催化剂中存在的Fe_3C,是其催化性能提高的可能原因。  相似文献   

10.
以紫外光还原法将氧化石墨(GO)还原成石墨烯(GN), 同时将磷钼酸(PMo12)修饰到石墨烯上, 形成磷钼酸功能化的石墨烯PMo12-GN, 并以此为基底利用电化学还原法制备了Pd/PMo12-GN复合膜催化剂。运用X射线粉末衍射、X射线光电子能谱、扫描电镜、透射电镜等对复合膜的组成、结构、形态进行表征, 结果表明: 实验成功制备了Pd/PMo12-GN复合膜催化剂, 且Pd颗粒均匀分散在PMo12-GN基底上。采用CV、计时电流法、CO溶出伏安法、交流阻抗法等电化学方法研究了Pd/PMo12-GN复合膜的电催化性能。研究结果表明: 制备的复合膜催化剂对甲酸氧化反应的催化活性、催化稳定性、抗CO毒化能力和电子传递能力显著优于商品化的Pd/C催化剂。Pd/PMo12-GN复合膜电催化性能的提高主要是由于Pd纳米颗粒在PMo12-GN基底上均匀分散, 以及PMo12的强氧化能力从而使钯表面一氧化碳等中间产物能迅速氧化去除。  相似文献   

11.
为了解决能源危机问题,探究具有高活性位点的电催化剂材料十分必要。可使用沸石咪唑啉框架(ZIF-67)为前驱体,通过吸收和热解制备同时掺有Co、Mo和S的多孔碳材料。合成的样品通过X射线衍射、扫描电镜、透射电镜和x射线光电子能谱等手段进行表征,利用电化学测试来研究其电催化性能。结果表明:与Co/NC和CoMo/NC相比,CoMoS/NC表现出更优异的电催化性能,在10mA/cm2时的过电位低为172mV,Tafel斜率为67.8mV/dec。CoMoS/NC也表现出良好的长期稳定性,Co、Mo和S可以作为HER反应过程中的活性位点,多孔碳结构促进了电荷的转移。多个活性位点和独特的结构确保了该材料CoMoS/NC的卓越性能。  相似文献   

12.
阳极氧化法制备了TiO2纳米管阵列电极。场发射扫描电子显微镜(FESEM)和X射线衍射仪(XRD)表征了不同温度热处理电极表面形貌和晶体结构。电化学阻抗谱(EIS)研究了TiO2纳米管电极导电性能受热处理温度的影响。荧光光谱法检测了各电极产生羟基自由基(·OH)活性。考察了甲基橙(MO)电催化降解过程。结果表明:TiO2纳米管电极导电性及其产生·OH活性均受热处理温度的显著影响,400℃热处理的电极性能最好;MO的电催化降解符合一级反应动力学模型。  相似文献   

13.
以醋酸钯和醋酸亚铁为前驱体, 采用直接热分解法制备了碳载Pd3-Fe1(Pd3-Fe1/C)催化剂。用X射线衍射(XRD)、透射电镜(TEM)和X射线光电子能谱(XPS)等技术对催化剂进行了表征, 用循环伏安法和线性扫描伏安法研究了催化剂对氧的电催化还原性能。结果表明, 制备的Pd3-Fe1/C复合催化剂具有单相均一的合金结构, Fe进入Pd晶格改变了Pd电子结构和结构常数。电化学数据表明, Pd3-Fe1/C对氧还原比Pd/C催化剂有更高的电催化性能。  相似文献   

14.
为研究热氧化分解温度对钛基RuO2-TiO2电极表面形貌、电催化活性和寿命等的影响,将三氯化钌和钛酸丁酯混合溶液在不同温度下烧结制备Ti/RuO2-TiO2阳极.通过扫描电镜(SEM)、X射线衍射仪(XRD)、循环伏安(CV)曲线、线性扫描伏安(LSV)曲线和加速寿命试验等表征方法研究烧结温度对Ti/RuO2-TiO2电极表面形貌、物相、电催化活性和寿命等性能的影响.结果 表明:随着烧结温度的增加,电极涂层表面的组织结构和形貌以及电极的电催化活性和稳定性发生明显变化.随着煅烧温度的升高,制备的电极电催化活性总体呈现减小的趋势.温度低于450℃制备的电极稳定性和电催化活性较好,高于450℃制备的电极稳定性和电催化活性较差.450℃时制备的电极稳定性最好,电催化活性仅次于420℃,析氯电位为1.087 V.  相似文献   

15.
采用便捷的一步热解途径合成了氮掺杂石墨烯载钴纳米粒子(Co/NG),并表征了其结构、形貌和表面性质,进一步评价了Co/NG作为阴极催化剂对氧还原反应的电催化性能。透射电镜(TEM)和X射线粉末衍射(XRD)谱分析显示平均粒径21.4nm的Co纳米粒子较均匀地分散在三维多孔状石墨烯上。X射线光电子能谱(XPS)结果表明,Co/NG存在两类含氮组分,即吡啶氮和吡咯氮。电化学测试结果显示,Co/NG催化剂在碱性介质中对氧还原反应的起始还原电位约-0.049V,极限电流密度为5.9mA/cm~2。其电催化活性与商业化Pt/C相当。  相似文献   

16.
利用乙酸钴和双氰胺在不同温度下制备了碳包覆钴样品,并将其作为载体,利用液相还原法和真空热处理制备了PdCo/C合金催化剂。采用多种测试技术对样品进行了结构、形貌及组分的表征,研究了不同载体和不同热处理温度的样品的催化性能。实验结果表明,平均粒径为1.9nm的钯纳米颗粒能够均匀负载到含氮的石墨化程度较低的碳包覆钴载体上。热处理带来的合金化作用能够极大地提高催化剂的氧还原活性和稳定性,经过900℃热处理的样品其氧还原活性和稳定性都优于传统商业Pt/C催化剂。  相似文献   

17.
Pd催化剂对甲酸氧化反应具有出色的电催化性能,适宜的载体有助于改善Pd颗粒的稳定性和分散性,从而使其催化性能得以有效发挥。鉴于此,以硼氢化钠为还原剂,采用化学还原法在不同还原温度(0℃、25℃和50℃)下制备了石墨烯负载Pd颗粒催化剂(Pd/RGO)。采用XRD、Raman、XPS、TGA、TEM和BET等测试方法对该催化剂材料的微观形貌和结构进行了表征,利用循环伏安法和计时电流法测试了催化剂对甲酸氧化反应的电催化性能,着重分析了制备过程中还原温度对催化剂材料结构与电催化性能的影响。结果表明,当还原温度为0℃时,Pd/RGO的比表面积最大,达到261 m~2·g~(-1),Pd颗粒粒径最小,约为4. 16 nm;并且Pd/RGO具有最大的电化学活性面积(3. 02 cm~2),其氧化峰电流密度最高可达1 820 m A·mg~(-1)Pd。  相似文献   

18.
采用氮气中500℃和600℃热处理由阳极氧化法制备的TiO2纳米管阵列,制备了氮掺杂TiO2纳米管阵列电极.分别用环境扫描电镜(ESEM)、X射线光电子能谱(XPS),X射线衍射(XRD)和紫外可见漫反射吸收光谱对电极进行了表征.结果表明氮成功地掺入TiO2纳米管中.氮的引入使所制备的电极表现出可见光电催化活性,其中氮气中500℃下热处理得到的TiO2纳米管阵列电极表现出最好的可见光电催化活性.  相似文献   

19.
采用水热法和后续热处理工艺,制备了氮化钛-碳纳米管(TiN-CNTs)复合材料,再用液相还原法在其表面均匀沉积了铂纳米颗粒。利用X射线衍射、透射电子显微镜和X射线光电子能谱等手段对催化剂进行表征。结果表明:TiN的加入增强了铂与载体之间的相互作用。电化学性能测试结果也说明,以TiN-CNTs复合材料作为载体的催化剂,表现出更高的催化活性和稳定性。  相似文献   

20.
选用水溶性高分子聚乙烯亚胺(PEI)修饰石墨烯(GN),增强石墨烯的水溶性和分散性;利用层层自组装法制备{PEI-GN/PW12}n复合膜,并以此为基底膜,用循环伏安法原位电沉积制备Pt纳米簇负载的复合膜催化剂。紫外-可见分光光度法(UV-Vis)、X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)等技术表征复合膜催化剂组成、形貌和结构。循环伏安法(CV)、计时电流法(It)、CO溶出伏安法及电化学阻抗等电化学方法研究结果表明,该纳米复合膜催化剂对甲醇氧化具有良好的电催化活性、稳定性及抗CO毒化能力。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号