首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Concentrated solar power (CSP) plants generate an almost continuous flow of fully dispatchable “renewable” electricity and can replace the present fossil fuel power plants for base load electricity generation. Nevertheless, actual CSP plants have moderate electricity costs, in most cases quite low capacity factors and transient problems due to high inertia. Hybridization can help solve these problems and, if done with the integration of forest waste biomass, the “renewable” goal can be maintained, with positive impact on forest fire reduction. Local conditions, resources and feed in tariffs have great impact on the economical and technical evaluation of hybrid solutions; one of the premium European locations for this type of power plants is the Portuguese Algarve region.Due to the concept innovation level, conservative approaches were considered to be the best solutions. In this perspective, for a lower capital investment 4 MWe power plant scale, the best technical/economical solution is the hybrid CRS/biomass power plant HVIB3S4s with CS3 control strategy. It results in a levelized electricity cost (LEC) of 0.146 €/kWh, with higher efficiency and capacity factor than a conventional 4 MWe CRS. A larger 10 MWe hybrid power plant HVIB3S10s could generate electricity with positive economical indicators (LEC of 0.108 €/kWh and IRR of 11.0%), with twice the annual efficiency (feedstock to electricity) and lower costs than a conventional 4 MWe CRS. It would also lead to a 17% reduction in biomass consumption (approximately 12,000 tons less per year) when compared with a typical 10 MWe biomass power plant – FRB10; this would be significant in the case of continuous biomass price increase.  相似文献   

2.
In this work, a technical and economic analysis concerning the integration of parabolic trough concentrated solar power (CSP) technologies, with or without thermal storage capability, in an existing typical small isolated Mediterranean power generation system, in the absence of a feed-in tariff scheme, is carried out. In addition to the business as usual (BAU) scenario, five more scenarios are examined in the analysis in order to assess the electricity unit cost with the penetration of parabolic trough CSP plants of 50 MWe or 100 MWe, with or without thermal storage capability. Based on the input data and assumptions made, the simulations indicated that the scenario with the utilization of a single parabolic trough CSP plant (either 50 MWe or 100 MWe and with or without thermal storage capability) in combination with BAU will effect an insignificant change in the electricity unit cost of the generation system compared to the BAU scenario. In addition, a sensitivity analysis on natural gas price, showed that increasing fuel prices and the existence of thermal storage capability in the CSP plant make this scenario marginally more economically attractive compared to the BAU scenario.  相似文献   

3.
The impacts of recurrent droughts have increased vulnerability and reduced the adaptive capacity of the people living in arid and semi-arid lands (ASALS) of Kenya. Current interventions are short-term and curative in nature, hence unsustainable. Some of the most arid and semi-arid lands are located within the Kenyan Rift system, which has an estimated geothermal potential of about 7000 to 10,000 MWe, out of which only 200 MWe has been developed, and about 5000 MWe planned by 2030. Recent power sector reforms have built institutional structures that will accelerate development of geothermal energy. The paper analyses the potential use of geothermal energy resources in eastern Baringo lowlands between Lake Bogoria and Silali prospects, which has an estimated potential of >2700 MWe, in creating the necessary adjustments needed to adapt to the impacts of recurrent droughts by locals. Opportunities for direct and indirect uses of geothermal energy exist in climate vulnerable sectors, such as, agriculture, fisheries, water, livestock production as well as alternative income generating activities such as, tourism, micro enterprises, aloe, honey and beeswax production, fabric dyeing and others using resources sourced from within a 50 km radius. The possibility of accelerated geothermal development and proposed utilisation schemes in causing maladaptation if unsustainably implemented is also discussed. The paper draws a Lindal diagram adapted to the study area showing potential utilisation in the above sectors, and new flow diagram showing potential for cascaded use of geothermal hot water through the different processes. An estimated capacity of 100 MWt and 100 MWe can be used in the potential utilisation schemes discussed in this article to meet local adaptation and lighting needs and much less in a cascaded process. Potential barriers and possible solutions are also discussed. The study concludes that geothermal energy is a vital option for adaptation in the study area if sustainably used.  相似文献   

4.
Geothermal energy and the other renewable energy sources are becoming attractive solutions for clean and sustainable energy needs of Turkey. Geothermal energy is being used for electricity production and it has direct usage in Turkey, which is among the first five countries in the world for the geothermal direct usage applications. Although, Turkey is the second country to have the highest geothermal energy potential in Europe, the electricity production from geothermal energy is quite low. The main purpose of this study is to investigate the status of the geothermal energy for the electricity generation in Turkey. Currently, there is one geothermal power plant with an installed capacity of 20.4 MWe already operating in the Denizli–Kizildere geothermal field and another is under the construction in the Aydin–Germencik field.This study examines the potential and utilization of the existing geothermal energy resources in Kutahya–Simav region. The temperature of the geothermal fluid in the Simav–Eynal field is too high for the district heating system. Therefore, the possibility of electrical energy generation by a binary-cycle has been researched and the preliminary feasibility studies have been conducted in the field. For the environmental reasons, the working fluid used in this binary power plant has been chosen as HCFC-124. It has been concluded that the Kutahya–Simav geothermal power plant has the potential to produce an installed capacity of 2.9 MWe energy, and a minimum of 17,020 MWh/year electrical energy can be produced from this plant. As a conclusion, the pre-feasibility study indicates that the project is economically feasible and applicable.  相似文献   

5.
《Journal of power sources》2005,145(2):702-706
An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al2O3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al2O3 pellets prepared by ‘incipient wetness’ were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H2, 24.5% CO2 and 2.2% CO at 230–260 °C which can produce power output of 59 Wt.  相似文献   

6.
This paper reports the results of the most complete conceptual study conducted to date on hydrogen production using the hybrid chlorine cycle. Three alternative process flow sheets were developed, each capable of producing hydrogen at 35 °C (308 K) and 21 bar. The alternative approaches differ primarily in the way HCl is isolated and converted to hydrogen and chlorine gases. Aspen Plus? simulation software was used to model the unit processes, supplemented where necessary by custom Excel spreadsheets. Major equipment was sized for a 200-million kg/yr plant; feasible materials of construction were identified; fixed capital investments and variable costs were estimated. Estimated net thermal efficiencies of the flow sheets range from 30% to 36%, based on the lower heating value of the hydrogen produced. With electrical power valued at $0.05/kWh, the cost of hydrogen produced by the hybrid chlorine cycle would be at least $3/kg. These results indicate that direct electrolysis of water is a more attractive way to produce hydrogen than any presently conceived version of the hybrid chlorine cycle.  相似文献   

7.
In LNG regasification facilities, for exergy recovery during regasification, an option could be the production of electric energy recovering the energy available as cold. The authors propose an innovative process which uses a cryogenic stream of LNG during regasification as a cold source in an improved CHP plant (combined heat and power). Considering the LNG regasification projects in progress all over the World, an appropriate design option could be based on a modular unit having a mean regasification capacity of 2 × 109 standard m3/yr.This paper deals with an outlook of LNG trading now expanding in the World and gives a concise state of the art with a review of technology seeming that proposed. Then an innovative CHP plant and results pertaining the selection of working fluids, made with an optimization analysis, are presented.  相似文献   

8.
A computational fluid dynamics (CFD) investigation of single-phase flow mass transfer prediction in annular reactors was conducted. Different hydrodynamic models including laminar, standard k–ε, realizable k–ε, Reynolds stress (RSM), and the Abe-Kondoh-Nagano (AKN) (a low Reynolds number turbulence model) were evaluated against experimental data in terms of their mass transfer predication capabilities. The laminar model predicted successfully the average mass transfer in the flows under laminar regime (Re < 1500). Among the four evaluated turbulence models, the AKN model provided a better prediction of the average mass transfer rates in the systems when operated both under transitional and turbulent conditions (3000 < Re < 11000). The RSM performed very similarly to the AKN model, except for the entrance region of the reactors where it predicted lower mass transfer rates. These results make the AKN and RSM models very attractive to be integrated in CFD-based simulations of turbulent annular reactors.  相似文献   

9.
Solar chimney thermal power technology that has a long life span is a promising large-scale solar power generating technology. This paper performs economic analysis of power generation from floating solar chimney power plant (FSCPP) by analyzing cash flows during the whole service period of a 100 MW plant. Cash flows are influenced by many factors including investment, operation and maintenance cost, life span, payback period, inflation rate, minimum attractive rate of return, non-returnable subsidy rate, interest rate of loans, sale price of electricity, income tax rate and whether additional revenue generated by carbon credits is included or not. Financial incentives and additional revenue generated by carbon credits can accelerate the development of the FSCPP. Sensitivity analysis to examine the effects of the factors on cash flows of a 100 MW FSCPP is performed in detail. The results show that the minimum price for obtaining minimum attractive rate of return (MARR) of 8% reaches 0.83 yuan (kWh)?1 under financial incentives including loans at a low interest rate of 2% and free income tax. Comparisons of economics of the FSCPP and reinforced concrete solar chimney power plant or solar photovoltaic plant are also performed by analyzing their cash flows. It is concluded that FSCPP is in reality more economical than reinforced concrete solar chimney power plant (RCSCPP) or solar photovoltaic plant (SPVP) with the same power capacity.  相似文献   

10.
Cane trash could viably substitute fossil fuels in heat and power generation projects to avoid air pollution from open burning and reduce greenhouse gas (GHG) emission. It is competitive with bituminous and other agro-industrial biomass. Using cane trash for heat generation project could provide a higher reliability and return on investment than power generation project. The heat generation project could be viable (Financial Internal Rate of Return, FIRR = 36–81%) without feedstock subsidy. With current investment and support conditions, the capacity of 5 MW option of power generation project is the most viable (FIRR = 13.6–15.3%); but 30 MW, 1 MW and 10 MW options require feedstock subsidy 450–1100 Baht/t-cane trash to strengthen financial viability. Furthermore, the revenue from carbon credit sales could compensate the revenue from current energy price adder and increases 0.5–1.0% FIRR of power generation project. Using cane trash for 1 MW power generation could reduce GHG emission 637–861 t CO2eq and avoid air pollutant emissions of 3.35 kg nitrogen oxides (NOx), 0.41 kg sulfur oxides (SOx) and 2.05 kg volatile organic compounds (VOC). Also, 1 t steam generation from cane trash could avoid pollutant emissions of 0.6 kg NOx, 0.07 kg SOx, and 0.37 kg VOC. The potential of cane trash to cause fouling/slagging as well as erosion are not significantly different from other biomass, but chlorinated organic compounds and NOx could be higher than bituminous and current biomass feedstock at sugar mill (bagasse and rice husk).  相似文献   

11.
This paper presents a methodology for the estimation of temperature dependent heat transfer coefficient for a vertical rectangular fin by using the inverse heat transfer method with Liquid crystal thermography (LCT) data. Steady state, laminar natural convection experiments have been done on a vertical rectangular fin of size 150 × 250 × 4, (L × w × t, all dimensions are in mm). The variation of heat transfer coefficient is considered as a power law function of temperature excess (h = aoθb) and is derived from the basic Nusselt number equation used for laminar natural convection, Nu = aRab. With this functional form, the one dimensional fin equation in finite difference form is repeatedly solved using the Gauss–Seidel iterative method. Treating this as a one parameter estimation in ‘a’ the sum of the squares of the difference between the simulated and Thermochromic Liquid Crystal (TLC) measured temperatures is minimized with the Golden section search algorithm to retrieve ‘a’. Estimate of ‘a’ and the accompanying uncertainties are first reported for synthetically generated temperature distribution for assumed values of ‘a’. The effect of noise on the estimate of ‘a’ is discussed. This is followed by retrievals with experimentally obtained TLC temperature distribution for a range of heat inputs to the fin base. The required temperature distributions for accomplishing the retrievals over the surface are obtained using calibrated R40C5W Thermochromic Liquid Crystal (TLC) sheets. As an additional proof of the accuracy of the method, the retrieved value of ‘a’ is used to simulate the temperature distribution in the fin which is then compared with the actual TLC measured temperature distribution.  相似文献   

12.
This paper investigates the economics of integrated gasification polygeneration (IG-PG) facilities and assesses under which market conditions flexible facilities outperform static facilities. In this study, the facilities use Eucalyptus wood pellets (EP), torrefied wood pellets (TOPS) and Illinois #6 coal as feedstock to produce electricity, FT-liquids, methanol and urea. All facilities incorporate CCS. The findings show production costs from static IG-PG facilities ranging between 12 and 21 €/GJ using coal, 19–33 €/GJ using TOPS and 22–38 €/GJ using EP, which is above the average market prices. IG-PG facilities can become competitive if capital costs drop by 10%–27% for coal based facilities. Biomass based facilities will need lower biomass pellet prices or higher CO2 credit prices. Biomass becomes competitive with coal at a CO2 credit price of 50–55 €/t CO2. Variations in feedstock, CO2 credit and electricity prices can be offset by operating a feedstock flexible IG-PG facility, which can switch between coal and TOPS, thereby altering its electricity production. The additional investment is around 0.5% of the capital costs of a dedicated coal based IG-PG facility. At 30 €/t CO2, TOPS will be the preferred feedstock for 95% of the time at a feedstock price of 5.7 €/GJ. At these conditions, FT-liquids (gasoline/diesel) can be produced for 15.8 €/GJ (116 $/bbl). Historic records show price variations between 5.7 and 7.3 €/GJ for biomass pellet, 1.0–5.6 €/GJ for coal and 0–32 €/t CO2. Within these price ranges, coal is generally the preferred feedstock, but occasionally biomass is preferred. Lower biomass prices will increase the frequency of switching feedstock preference from coal to biomass, raising the desire for flexibility. Of the three investigated chemicals, an IG-PG facility producing FT-liquids benefits the most from flexibility. Our study suggests that if the uncertainty in commodity prices is high, a small additional investment can make flexible IG-PG facilities attractive.  相似文献   

13.
Current energy trends in UK housing are reviewed and then assessed by introducing the ‘CARB financial analysis’ methodology. CARB is an acronym for ‘Carbon Abatement’, as it evaluates the potential carbon-dioxide reduction from different technologies; ‘Relative’, as all the technologies examined are dependant on various primary sources; and ‘Balance’, as the cost of surplus CO2 is quantified. According to conventional financial analysis, most of the technologies examined have the potential to provide positive returns on the investments especially for those with an environmentally conscious agenda. Further reduction of up to 30% of most installed alternative energy systems cost is required to compete with an investment in, e.g., a UK pension scheme. Using the ‘CARB financial analysis’ the cost of reducing CO2 has been quantified, and compared with the potential cost of climate change impact. Conventional installed solar technologies are not financially attractive both with a pay back period calculations and ‘CARB financial analysis’ under current market costs and governmental subsidy regimes. Heat recovery technologies could be sensible investments, both in financial and environmental terms under particular assumptions; especially if the investment budget is small. The use of cogeneration technologies provides a financial advantage in the attempt to minimise the cost of climate change impact, as pay back period of such investment could be less than 7 yr, and the cost of CO2 saved could be two to seven times less than the global damage cost of carbon emissions.  相似文献   

14.
In this paper, relative life cycle economic analysis (LCEA) of stand-alone solar PV modules is performed with respect to portable fossil fuel driven power sources to test their commercial prospects in remote regions of Bangladesh which do not have a direct access to grid supply. Overall life time expenditures related to the power projects are analyzed and compared with the help of net present worth (NPW) theory. The influence of market controlling factors like government subsidies, excess inflation over the general trend, and price hike are established with case study of medium-scale petrol–diesel generators (0.8–10 kW) and solar photovoltaic modules (100 Wp). It is found that the cost effectiveness of conventional or ‘green’ power driven sources depends on kW rating of generators and daily demand on customer-end in the context of a developing country like Bangladesh. The demand coverage which would determine the commercial viability of renewable and non-renewable sources is calculated considering pragmatic power rating of generators available in the local market. This study is intended to assist planning of financial matters with regard to installing small to medium scale renewable projects in remote localities of Bangladesh.  相似文献   

15.
Electricity consumption growth in China has experienced radical adjustment from high speed to medium speed with the advent of new economy normal. However, the investment enthusiasm on coal power remains unabated and leads to continuous operation efficiency deterioration in recent years. In this paper, we quantify the rational capacity and potential investment of coal power in China during the 13th FYP period (2016–2020). By employing power planning model and fully considering the power sector's contribution in the 15% non-fossil primary energy supply target by 2020, we estimate that the reasonable capacity addition space of coal power ranges between 50 GW and 100 GW, depending on the expected range of demand growth. We find that if all the coal power projects submitted for Environmental Impact Assessment (EIA) approval were put into operation in 2020, capacity excess would reach 200 GW. Such huge overcapacity will bring forth disastrous consequences, including enormous investment waste, poor economic performance of generators and more importantly, delay of low-carbon energy transition. Finally, policy recommendations are proposed to address this issue.  相似文献   

16.
A low-grade waste heat driven solid/vapour adsorption chiller has been successfully designed and tested. A simple model was developed to aid the design and predict the performances. The system comprised two identical sorption reactors operating out of phase in order to ensure continuous cold production. One sorption reactor consisted of six commercially available automotive plate/fin heat exchangers in which silica gel grains were accommodated between the fins. The system was tested as to the power delivered at 12 °C and the power density. The average cooling power was 3.6 kW. This is only 72% of the design value and can be largely attributed to the lower heat transfer fluid flow rate through the sorbent reactor. The thermal efficiency, COP, was 0.62 and the power density was 17 kW/m3 for the system as a whole. Higher power densities are possible. At present, the adsorption chiller is integrated in a prototype trigeneration system, which is tested at CRF’s Eco-building in Turin.  相似文献   

17.
《Journal of power sources》2002,104(2):289-294
The performance of solid-polymer-electrolyte direct methanol fuel cells (SPE-DMFCs) is substantially influenced by the morphology of the gas diffusion-layer in the catalytic electrodes. Cells utilising gas diffusion-layers made with high surface-area Ketjen Black carbon, at an optimised thickness, show better performance compared with cells utilising Vulcan XC-72 carbon or ‘acetylene black’ carbon in the diffusion-layer. The cells with a hydrophilic diffusion-layer on the anodes and a hydrophobic diffusion-layer on the cathodes yield better performance. The cells with oxygen or air as the oxidant gave power density of 250 or 105 mW cm−2, respectively, at an operational temperature of 90 °C and 2 bar pressure.  相似文献   

18.
European biomass resource potential and costs   总被引:1,自引:0,他引:1  
The objective of this study is to assess the European (EU27+ and Ukraine) cost and supply potential for biomass resources. Three methodological steps can be distinguished (partly based on studies explained elsewhere in this volume) (i) an evaluation of the available ‘surplus’ land, (ii) a modeled productivity and (iii) an economic assessment for 13 typical bioenergy crops. Results indicate that the total available land for bioenergy crop production – following a ‘food first’ paradigm – could amount to 900 000 km2 by 2030. Three scenarios were constructed that take into account different development directions and rates of change, mainly for the agricultural productivity of food production. Feedstock supply of dedicated bioenergy crop estimates varies between 1.7 and 12.8 EJ y?1. In addition, agricultural residues and forestry residues can potentially add to this 3.1–3.9 EJ y?1 and 1.4–5.4 EJ y?1 respectively. First generation feedstock supply is available at production costs of 5–15  GJ?1 compared to 1.5–4.5  GJ?1 for second generation feedstocks. Costs for agricultural residues are 1–7  GJ?1 and forestry residues 2–4  GJ?1. Large variation exists in biomass production potential and costs between European regions, 280 (NUTS2) regions specified. Regions that stand out with respect to high potential and low costs are large parts of Poland, the Baltic States, Romania, Bulgaria and Ukraine. In Western Europe, France, Spain and Italy are moderately attractive following the low cost high potential criterion.  相似文献   

19.
Parabolic trough power plants are currently the most commercially applied systems for CSP power generation. To improve their cost-effectiveness, one focus of industry and research is the development of processes with other heat transfer fluids than the currently used synthetic oil. One option is the utilization of water/steam in the solar field, the so-called direct steam generation (DSG).Several previous studies promoted the economic potential of DSG technology (Eck et al., 2008b, Price et al., 2002, Zarza, 2002). Analyses’ results showed that live steam parameters of up to 500 °C and 120 bars are most promising and could lead to a reduction of the levelized electricity cost (LEC) of about 11% (Feldhoff et al., 2010). However, all of these studies only considered plants without thermal energy storage (TES).Therefore, a system analysis including integrated TES was performed by Flagsol GmbH and DLR together with Solar Millennium AG, Schott CSP GmbH and Senior Berghöfer GmbH, all Germany. Two types of plants are analyzed and compared in detail: a power plant with synthetic oil and a DSG power plant. The design of the synthetic oil plant is very similar to the Spanish Andasol plants (Solar Millennium, 2009) and includes a molten salt two-tank storage system. The DSG plant has main steam parameters of 500 °C and 112 bars and uses phase change material (PCM) for the latent and molten salt for the sensible part of the TES system. To enable comparability, both plants share the same gross electric turbine capacity of 100 MWel, the same TES capacity of 9 h of full load equivalent and the same solar multiple of the collector field of about two.This paper describes and compares both plants’ design, performance and investment. Based on these results, the LEC are calculated and the DSG plant’s potential is evaluated. One key finding is that with currently proposed DSG storage costs, the LEC of a DSG plant could be higher than those of a synthetic oil plant. When considering a plant without TES on the other hand, the DSG system could reduce the LEC. This underlines the large influence of TES and the still needed effort in the development of a commercial storage system for DSG.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号