首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
合成一种三环喹唑啉的共轭微孔聚合物(TQ-CMPs)并用水热法使二硫化钼原位生长在其骨架表面,制备出一种新型复合电催化析氢催化剂并研究了它的电催化析氢活性。结果表明,TQ-CMPs与MoS2的质量比为2∶1的催化剂具有优异的电催化析氢活性,其过电势为71 mV,Tafel斜率为52 mV·dec-1。比表面积较大的TQ-CMPs,使MoS2的分散度提高、避免了MoS2的堆积和聚集并使更多的MoS2边缘暴露,从而提高了催化剂的效率。TQ-CMPs丰富的孔道结构和延伸的π共轭骨架,有利于质量运输和电荷转移。  相似文献   

2.
采用液相剥离法制备二维黑磷烯纳米片(BP),将其与改性的MoS2通过水热法合成得到NH2-MoS2@BP,利用XRD、SEM、TEM对材料的形貌结构进行表征,并通过三电极体系测试析氢性能。结果表明,NH2-MoS2@BP形貌呈片层结构,BP在催化剂中颗粒很小且均匀的分布在其表面。在0.5mol/L H2SO4溶液中,当电流密度为10mA/cm2时,氨基的加入使催化剂的析氢过电位降低了20mV,BP的加入使催化剂的析氢过电位降低了90mV,塔菲尔斜率为95mV/dec,表明BP有利于改善改性MoS2的催化性能。此外,连续的循环伏安测试表明NH2-MoS2@BP具有较好的电催化稳定性。  相似文献   

3.
电化学水分解是将可再生能源产生的间歇性电能转化为高纯度氢气的一种极具前景的绿色能源技术.目前,高效制氢催化剂主要由贵金属及其化合物组成,而贵金属的高成本及稀缺性,限制了其在大规模工业化制氢中的应用.因此,探索低成本,高电化学活性、高稳定性的电解水制氢催化剂至关重要.合金化材料以短程或长程有序结构存在,具有增强的电化学性能.因此,本文采用两步法制备超小碳负载FeRu合金纳米电催化剂并将其应用于电催化析氢反应.Fe0.05Ru0.05/XC-72双功能电催化剂粒径为2.1 nm,在碱性淡水和海水电解质中表现出优异的活性和耐久性.10 mA cm-2时,在1 mol L-1 KOH、1 mol L-1 KOH+0.5 mol L-1 NaCl和1 mol L-1 KOH+海水中分别表现出13、15和18 mV的过电位.在1 mol L-1 KOH介质和-0.07 V(相比于可逆氢电极)条件下,Fe0.05  相似文献   

4.
反应物界面对电催化反应至关重要.然而,由于调控和表征手段的不足,对反应物界面的深入研究仍难以实现.本文中,我们借助单片电催化微纳器件,通过调节背栅电压引入分子极化,实现了对电化学双电层中水合氢离子(H3O+)浓度的调控,进而提高了催化剂的电催化析氢性能.以C60/MoS2异质结为例,电学性能测试表明背栅电场促进了电子从C60向MoS2的转移,并导致了C60分子的极化.原位光致发光光谱表征显示,在背栅电场的作用下,极化的C60分子会吸引H3O+,使其聚集在MoS2附近.而电催化测试表明,在1.5 V背栅电压下,由于发生了H3O+的富集,C60/MoS2异质结在-0.45 VRHE电位下的析氢电流密度增加了5倍我们提出的调控和监测反应物界面的方...  相似文献   

5.
将制氢与间歇性可再生能源驱动的生物质电催化转化结合起来,是获得氢能和高附加值化学品的有效途径.然而,开发具有明确结构-性能关系的强效多功能电催化剂仍然是一个相当大的挑战.本文巧妙地开发了一种阳离子和阴离子共掺策略,以协同调控NiFe层状双氢氧化物的电子结构,明显促进了催化活性位点的暴露,从而提高了葡萄糖电催化转化制氢的性能.实验结果表明,杂原子Cr和S的加入促进了Ni(OH)2 (Ni2+)/NiOOH (Ni3+)的可逆氧化还原,显著提高了葡萄糖的电荷转移和吸附能力.在葡萄糖电催化转化反应中,达到10 mA cm-2的电压仅为1.219 V,比析氧反应低0.226 V.此外,Cr,S-NiFe/NF在双电极电解槽中表现出显著的葡萄糖电催化转化性能和产氢性能,达到10 mA cm-2电流密度的电势仅为1.337 V,同时在阳极产生增值的甲酸盐,产氢率较电解水制氢提高了9倍.该生物质转化制氢耦合电催化剂提高了制氢效率,并获得了高附加值化学品.  相似文献   

6.
二硫化钼纳米片(MoS2)是一种有望取代贵金属材料、非常有前景的电催化析氢材料。MoS2不足在于导电性较差,析氢反应(HER)能垒较高。为了克服这一缺点,我们引入制备简单、导电性良好的Mo2N作为基体。通过水热法,将MoS2纳米片均匀生长在Mo2N颗粒表面,一方面增加了材料导电性,另一方面MoS2与Mo2N形成MoS2/MoxN异质结构有效增强水分子的解吸,从而提高HER性能。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、电化学工作站对MoS2/MoxN进行结构、形貌以及性能的表征。实验结果表明,MoS2纳米片均匀生长在Mo2N颗粒表面,形成异质结构,水热12 h所得材料性能最佳。以MoS2/MoxN作为工作电极,碳棒与Ag...  相似文献   

7.
二硫化钼纳米片(MoS2)是一种有望取代贵金属材料、非常有前景的电催化析氢材料。MoS2不足在于导电性较差,析氢反应(HER)能垒较高。为了克服这一缺点,我们引入制备简单、导电性良好的Mo2N作为基体。通过水热法,将MoS2纳米片均匀生长在Mo2N颗粒表面,一方面增加了材料导电性,另一方面MoS2与Mo2N形成MoS2/MoxN异质结构有效增强水分子的解吸,从而提高HER性能。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、电化学工作站对MoS2/MoxN进行结构、形貌以及性能的表征。实验结果表明,MoS2纳米片均匀生长在Mo2N颗粒表面,形成异质结构,水热12 h所得材料性能最佳。以MoS2/MoxN作为工作电极,碳棒与Ag...  相似文献   

8.
二硫化钼纳米片(MoS2)是一种有望取代贵金属材料、非常有前景的电催化析氢材料。MoS2不足在于导电性较差,析氢反应(HER)能垒较高。为了克服这一缺点,我们引入制备简单、导电性良好的Mo2N作为基体。通过水热法,将MoS2纳米片均匀生长在Mo2N颗粒表面,一方面增加了材料导电性,另一方面MoS2与Mo2N形成MoS2/MoxN异质结构有效增强水分子的解吸,从而提高HER性能。利用X射线衍射仪(XRD)、X射线光电子能谱仪(XPS)、扫描电子显微镜(SEM)、电化学工作站对MoS2/MoxN进行结构、形貌以及性能的表征。实验结果表明,MoS2纳米片均匀生长在Mo2N颗粒表面,形成异质结构,水热12 h所得材料性能最佳。以MoS2/MoxN作为工作电极,碳棒与Ag...  相似文献   

9.
提出一种通过增加反应物中硫脲比例来合成层间距宽化的二硫化钼(E-MoS2)的一步合成方法。该方法中,过量硫脲高温下转化为硫氰酸铵原位嵌入MoS2层间使层间距宽化,避免传统E-MoS2的复杂合成过程和外来插层分子的引入。该方法合成的E-MoS2微米花展现出良好的析氢性能:在电流密度为-10 mA/cm2时的析氢过电位为285 mV,塔菲尔斜率为68.5 mV/dec,远低原始MoS2的析氢过电位(588 mV)和塔菲尔斜率(122.2 mV/dec)。该E-MoS2析氢性能的提升可归因于:层间距的宽化优化MoS2的电子结构,从而提高导电性,降低氢吸附自由能;且合成过程中硫氰酸铵分子的原位嵌入抑制MoS2的生长,减小其微米花尺寸,使其暴露出更多的活性位点。因此,该E-MoS2微米花有望成为一种有前景的非贵金属析氢电催化剂。  相似文献   

10.
孙群翔  梁砚琴  朱胜利  李朝阳  姜辉 《功能材料》2022,(11):11143-11149
开发非贵金属高效电催化剂是降低电解水制氢成本的关键。通过激光直写技术以及脱合金在泡沫镍基底上制备了一种自支撑的纳米多孔MoNi/Al3Ni2催化剂。该催化剂的纳米多孔结构增加了催化反应的活性位点,MoNi和Al3Ni2之间的协同效应使催化剂在碱性介质(1 mol/L KOH)中表现出优异的析氢性能。电化学测试结果表明,Al含量为80%时制备的MoNi/Al3Ni2催化剂在10 mA/cm2的电流密度下,过电位仅为31 mV,且表现出良好的电化学长期稳定性,在10 mA/cm2的电流密度下,稳定催化析氢100 h以上,为工业电解水析氢用电催化剂的大规模制备提供了理论指导。  相似文献   

11.
贵金属Pt具有最高的析氢活性,但其高昂的价格限制了大面积推广应用。因此,研究开发高活性、低成本的析氢电催化材料,对发展氢能产业具有重要意义。利用二步水热反应法成功制备单原子铁-硫化钼(Fe-MoS2)电催化材料,并采用X-射线粉末衍射(XRD)、高角环形暗场扫描透射电子显微镜(HAADF-STEM)成像技术、能量色散X射线光谱(EDX)、电子能谱测定(XPS)对Fe-MoS2进行了表征。XRD结果表明,所制备Fe-MoS2样品的粉末衍射曲线与晶态2H-MoS2的标准卡(JCPDS 37-1492)相一致,表明Fe-MoS2与2H-MoS2具有相同的晶型结构;球差电镜分析表明,铁单原子均匀分布于MoS2表面;EDX与XPS分析进一步表明铁单原子存在于MoS2结构中。采用线性扫描伏安(LSV)法研究了Fe-MoS2的析氢性能。结果表明,最佳条件下制备的Fe-MoS2,其析氢...  相似文献   

12.
电化学水分解制氢是一种极具发展前景的无污染制氢方法。设计一种价格低廉,并且具有高效催化性能的催化剂对缓解环境压力,以及对电催化析氢的大规模应用具有重要意义。以松果壳(PC)为生物质碳前驱体,尿素为氮源,RuCl3为钌源,通过水热和高温碳化的方法将Ru锚定在氮掺杂的生物质衍生碳基底上(Ru-N-CPC)。Ru-N-CPC具有良好的电化学性能(61 mV的过电位就可达到10 mA cm-2,1 mol/L KOH)和稳定性。采用一系列测试表明催化剂具有良好的电化学性能可归因于氮的掺杂导致了大量的缺陷产生,从而使Ru能够顺利地、均匀地被载于碳材料上,同时由于Ru和N的协同作用,促使催化析氢反应的活性提高。  相似文献   

13.
氢是高效的清洁能源,在应对全球能源危机和环境污染方面具有重要作用。电解水制氢是通过消耗可再生的电能(水电、光电、风电等)和储量丰富的水资源以获得氢气,该方法制氢颇具应用前景。然而,电解水过程中的析氢反应(HER)动力学迟缓、过电位高,导致制氢能耗较大。为提升析氢反应速率,需在电解水设备中引入贵金属作为催化剂,这进一步增加了制氢成本。开发高效低成本的析氢催化剂对电解水制氢的规模化应用至关重要。过渡金属硫属化合物(TMDs)因具有独特的层状结构和较低的氢原子吸附自由能,表现出良好的析氢催化活性,有望成为贵金属催化剂的替代品。近年来,MoS_2、WS_2、TiS_2、TaS_2、MoSe_2、WSe_2等TMDs材料被广泛用于催化析氢反应。TMDs的边缘位点被认为是其催化活性中心,且材料的催化性能与边缘位点数成正比。研究表明,通过缺陷调控增加边缘位点数是提升TMDs催化活性的不二法门。液相加工及其他低温合成法是目前制备富缺陷TMDs析氢催化剂的有效手段,然而该条件下得到的材料结晶性差、易发生电化学腐蚀、析氢稳定性低。高温处理可合成高结晶性的TMDs,具有较好的电化学稳定性。但高温结晶会使材料比表面积减小、缺陷和边缘位点数减少,造成催化活性不佳。采用化学/电化学剥离晶态TMDs样品,可在室温条件下制备富缺陷晶态TMDs析氢催化剂。然而,此方法受限于易燃溶剂的使用,且制备过程繁琐,难以实现规模化生产。因此,富缺陷晶态TMDs的制备,是高效析氢催化剂领域的研究重点和难点。在已报道的TMDs中,WSe_2因带隙小(1.6 eV)、导电性好而备受关注,引发了微纳WSe_2催化剂的研究热潮。其中,片状WSe_2有利于材料活性位点与电解液直接接触,通常表现出更优异的析氢催化活性。类似其他TMDs材料,富缺陷晶态WSe_2纳米片的制备,目前仍难以实现。本工作以WO_3和Se粉为原料,先在高温条件下合成高结晶度WSe_2,再经超声剥离得到晶态的WSe_2纳米片。在随后的长时间超声作用下,晶态WSe_2纳米片表面会进一步产生许多纳米级的岛状颗粒,得到富缺陷晶态WSe_2纳米片材料。选区衍射分析表明,岛状颗粒的引入使WSe_2纳米片新增了多晶衍射环。同时,材料的BET比表面积高达105.2 m~2·g~(-1),且具有更宽的孔径分布和更大的孔体积。在三电极条件下,以0.5 mol/L H_2SO_4为电解液,富缺陷晶态WSe_2纳米片在10 mA·cm~(-2)时的过电位仅为277 mV,远低于未剥离的WSe_2材料(385 mV)。此外,富缺陷晶态WSe_2纳米片的Tafel斜率(58 mV·dec~(-1))也明显低于剥离前的WSe_2(81 mV·dec~(-1))催化剂。虽然富缺陷晶态WSe_2纳米片的析氢催化活性与商用Pt/C (20%)贵金属材料相比仍有一定差距,但其成本较低,在大规模电解水制氢产业中仍有重要应用价值。交流阻抗测试进一步表明,富缺陷晶态WSe_2纳米片具有更低的电荷转移电阻,可有效提升析氢反应的电极动力学过程。长时间电解水析氢测试表明,富缺陷晶态WSe_2纳米片不仅具有高的析氢催化活性,还具有良好的电化学稳定性。富缺陷晶态WSe_2纳米片卓越的电化学性能主要得益于以下两点:一方面,超声剥离减小了催化剂的尺寸、增加了比表面积、拓宽了孔径分布,形成了富缺陷的WSe_2结构;另一方面,较高的结晶性使材料能够抵御电化学腐蚀,在析氢反应中表现出良好的稳定性。  相似文献   

14.
周治宇  陈俊雪  李义兵  蒋学先 《功能材料》2023,(3):3087-3091+3098
开发具有高效、持久活性析氧反应(oxygen evolution reaction, OER)的过渡金属电催化剂对于清洁制氢生产有重要意义。利用模板法制备非晶态的二元金属氢氧化合物CoFe(OH)x。利用X射线粉末衍射仪(XRD)、傅里叶变换红外光谱(FT-IR)、场发射扫描电子显微镜(SEM)、激光拉曼共聚焦显微镜拉曼光谱仪(Raman)对催化剂的相结构和微观形貌等进行表征,标准三电极的电化学系统在饱和N2气氛的1 mol/L KOH碱性溶液中,考察催化剂在析氧反应中催化性能。得益于非晶态结构存在大量缺陷和反应活性位点以及金属间的协同作用,通过电化学测试CoFe(OH)x/65在电流密度在10 mA/cm2下,过电位为288 mV;此外,其稳定运行14 h内无明显削弱,表现出良好的OER稳定性。  相似文献   

15.
电解水制氢是一项制取绿色氢能的重要技术,开发高催化活性的催化剂作为电极材料是当前的研究热点。电解水反应包括阴极的析氢反应和阳极的析氧反应,以Ni74Mo6Cu20三元合金条带为前驱体,采用电化学脱合金技术制备了一种用于析氢反应的表面纳米多孔NiMoCu电解水析氢催化剂,并采用扫描式电子显微镜、X射线衍射仪、X射线光电子能谱仪等设备对材料的物理化学特性进行了表征。结果表明:所制备的纳米多孔NiMoCu电极材料在1mol/L KOH溶液中具有良好的析氢性能,仅需要90mV、227mV的过电位就能达到10mA/cm2、100mA/cm2的电流密度。  相似文献   

16.
石墨烯和MoS2由于其自身良好的性能及其两者间优异的协同作用,使其复合材料在摩擦润滑、电催化等领域备受关注。综述了石墨烯/MoS2复合材料常见的制备方法以及石墨烯/MoS2复合材料的摩擦学和电化学性能研究进展,旨在为相关领域研究者提供有益的参考。  相似文献   

17.
氢能作为一种清洁能源,通过不可储存的可再生资源发电催化水分解制氢,被认为是解决能源和环境危机最有前景的技术之一。电解水反应必须使用高效催化剂降低析氢反应(HER)和析氧反应(OER)的过电势,因此开发高效、廉价的HER-OER双功能催化剂具有简化整体系统和降低成本的优势。综述报道了近3年HER-OER双功能催化剂的最新发展,对几种主要类型的双功能全电解水催化剂的合成、催化活性、稳定性及增强活性的方法进行了详细讨论,并对双功能催化剂面临的挑战和发展方向进行了展望。  相似文献   

18.
电解水是绿氢制备最有希望的路线之一,它的颈瓶是阳极析氧反应需要极高的过电位,导致电解水制氢整体能耗高.因此,迫切需要开发廉价、高活性、大电流稳定的非贵金属基多功能催化剂以期降低电解水的制氢能耗,如淡水或含尿素的水.鉴于此,我们合理设计并合成了绣球状的CoP/Ni3FeN异质结,用于碱性析氢、析氧和尿素电催化氧化反应.该催化剂呈现出优异的三功能催化活性和出色的大电流耐久性,在进行析氢、析氧和尿素电氧化反应时,分别需要-0.160、1.538和1.419 V的超低电位就能达到1000 mA cm-2的高电流密度.此外,将该电催化剂作为正极和负极耦合全解水/尿素器件,仅需要1.577/1.668 V的电压就能驱动500 mA cm-2.此外,结合原位拉曼光谱、测试后的X射线光电子能谱分析与密度泛函理论计算,我们验证了CoP/Ni3FeN异质结催化剂可以极大地促进析氧和尿素氧化反应中的活性物种金属羟基氧化物的形成,同时降低析氢反应中的水吸附和活性氢中间体的吸附能垒,从而协同促进高效的析氢、析氧和尿素电催化氧...  相似文献   

19.
我们设计了一种具有丰富活性位点和高效电荷分离的MoS2/ZnIn2S4光催化剂体系。首先采用低温回流法通过添加少量的柠檬酸钠对ZnIn2S4纳米片的尺寸进行调控从而制备了具有丰富活性位点ZnIn2S4纳米片。进一步通过简单的光辅助沉积法将不同质量MoS2负载在ZnIn2S4纳米片表面合成MoS2/ZnIn2S4复合材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)、X射线能谱仪(EDS),紫外-可见漫反射(UV-vis DSR)和电化学性能测试等表征手段对材料的形貌、结构和性能进行分析。经研究发现,ZnIn2S4纳米片较块状ZnIn2S4具有丰富的活性位点,MoS2/ZnIn2<...  相似文献   

20.
电催化裂解水产氢是一种可持续的环保能源储存技术,也是降低碳排放的重要手段。金属有机框架(MOFs)因具有比表面积大、孔隙率可调、结构调整多样化及修饰策略简易等优点,从而在电催化析氢领域引起了研究者的广泛关注。综述了Co基金属有机框架(Co-MOFs)及其衍生材料的制备方法、结构调节,以及微观结构对催化活性、催化稳定性和析氢能力的影响。结果表明:Co-MOFs及其衍生材料较传统催化剂表现出更加优异的电化学析氢活性。此外,提出了高性能催化剂的设计策略,并对其在电催化析氢领域的应用前景进行了展望。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号