首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
实验采用混酸法对碳纳米管(CNTs)表面进行改性,制得羧基化碳纳米管(C-CNTs)。采用溶胶-凝胶法制得SiO2包覆的C-CNTs (C-CNTs@SiO2)、TiO2包覆的C-CNTs (C-CNTs@TiO2),采用原位聚合法制得聚苯胺包覆的C-CNTs (C-CNTs@ PANI)。以环氧树脂(EP)为基体材料,通过溶液共混法制备出C-CNTs/EP、C-CNTs@SiO2/EP、C-CNTs@TiO2/EP和C-CNTs@PANI/EP四种复合材料。研究结果表明:当掺杂相的质量分数均为1 wt%时,四种EP基复合材料的冲击强度相对于未改性的环氧树脂均有不同程度的提高。当掺杂相质量分数为7 wt%时,C-CNTs/EP、C-CNTs@SiO2/EP、C-CNTs@TiO2/EP和C-CNTs@PANI/EP四种复合材料的介电常数分别是EP的14.1、7.2、2.5、18.8倍。在实验掺杂量下,C-CNTs@SiO2/EP和C-CNTs@TiO2/EP的介电损耗几乎没有变化,C-CNTs@PANI/EP的介电损耗略有增加。当掺杂相质量分数为1 wt%时,C-CNTs@SiO2/EP和C-CNTs@TiO2/EP的击穿强度相对于EP明显提高。   相似文献   

2.
以碳纳米管(Multi-walled carbon nanotubes)为导电剂,协同以碳纳米管和纸纤维复合成的CNTs导电纸为集流体,对石墨负极进行电化学改性。石墨化处理碳纳米管作为负极的添加相,采用XRD、SEM和TGA对其分析。结果表明,对比单纯的石墨/铜箔负极,掺杂0.8%(质量分数)石墨化碳纳米管的石墨/铜箔负极,电池比容量由304mAh/g变为308mAh/g,相差不大,但循环效率由86%升至92%;使用CNTs导电纸做集流体时,掺杂0.8%(质量分数)石墨化碳纳米管的石墨/CNTs导电纸负极,比容量由308mAh/g升至401mAh/g,提高30%,循环效率由92%升至95%,提高3%。说明碳纳米管协同CNTs导电纸对石墨负极具有积极的改性意义。  相似文献   

3.
以十二烷基苯磺酸钠(SDBS)为表面活性剂,采用超声分散工艺对碳纳米管(CNTs)进行包覆处理,将不同含量的CNTs与处理后的CNTs分别与环氧树脂(EP)球磨混合后制备CNTs/EP复合材料。采用透射电镜表征CNTs的微观形貌,并观察冲击试样断口形貌。结果表明:处理后的CNTs/EP较原CNTs具有良好的分散性,与树脂界面结合紧密,断口为韧性断裂。当处理后的CNTs含量为3%(wt,质量分数),制得的CNTs/EP复合材料的抗拉强度和冲击强度分别为72.5MPa和32.5kJ/m2,比未经处理的CNTs制得的CNTs/EP复合材料分别增长16.00%和41.30%,SDBS包覆处理效果明显。  相似文献   

4.
分别采用混酸、环氧树脂(EP)和硅烷偶联剂对碳纳米管(CNTs)进行功能化处理,用十八烷基三甲基氯化铵对蒙脱土(MMT)进行有机化处理,将具有一维纳米尺度的CNTs和二维纳米尺度的有机化蒙脱土(OMMT)复合引入EP酸酐固化体系,通过溶液共混法制备纳米OMMT/EP、CNTs/EP、CNTs-OMMT/EP复合材料。使用简支梁冲击试验仪测试三种复合材料的冲击强度,并利用SEM观察纳米复合材料的冲击断面形貌。实验结果表明,当OMMT的含量为4wt%时,纳米OMMT/EP复合材料的冲击强度比未掺杂纳米组分的EP提高了16.7%。经硅烷偶联剂处理后的CNTs(Si-CNTs)能与EP基体形成良好界面,当Si-CNTs的含量为0.9wt%时,纳米Si-CNTs/EP复合材料冲击强度比未掺杂纳米组分的EP提高了84.0%。当OMMT的含量为4wt%、Si-CNTs的含量为0.9wt%时,纳米Si-CNTs-OMMT/EP复合材料的冲击强度比未掺杂纳米组分的EP提高了135.4%。管状CNTs和片层结构OMMT对EP的韧性具有协同提高作用。  相似文献   

5.
针对纤维增强树脂基单向复合材料横向刚强度低的问题,通过碳纳米管(CNTs)在单向复合材料横向方位取向控制技术研究,建立了一种CNTs在树脂基复合材料中电场取向装置,制备了取向CNTs/环氧树脂(EP)复合材料及取向CNTs/玻璃纤维(GF)增强环氧树脂基单向层合板,并对不同电场强度、CNTs含量对其力学性能的影响进行了试验分析。结果表明,施加300V/cm的取向电场时,添加0.2wt%多壁碳纳米管(MWNTs)/EP储能模量较未添加MWNTs时提高了68.42%,较随机方位分布MWNTs/EP提高了1.36%;取向MWNTs/GF增强单向层合板横向弯曲强度及模量比未添加MWNTs时分别提高了72.2%和92.1%,比随机方位分布MWNTs增强时分别提高了58.29%和61.43%;施加439V/cm的取向电场时,添加0.2wt%取向MWNTs/GF增强单向层合板横向弯曲强度及模量比未添加MWNTs时分别提高了64.7%和63%,比随机方位分布MWNTs增强时分别提高了51.42%和36.90%,取向CNTs/GF增强树脂基单向层合板横向刚强度均得到了大幅提高。  相似文献   

6.
以0、5%、10%、15%和20%(质量分数)5种不同碳纳米管(CNTs)含量的全网胎针刺整体毡为预制体,经化学气相渗透方法增密后,制备出CNTs-C/C复合材料。借助万能试验机测试样品的压缩力学性能,并采用显微镜(PLM)和扫描电镜(SEM),研究了样品的微观组织结构和断口形貌。结果表明,添加纳米管后,有利于改善热解炭结构,同时提高C/C复合材料的压缩强度,且C/C复合材料的压缩强度随着CNTs添加量的增多而增大。当CNTs含量为20%(质量分数)时,复合材料的平行压缩强度为185.02 MPa,垂直压缩强度约200 MPa,相比于未添加CNTs,材料的压缩强度分别提升了36.66%和17.67%。未添加CNTs,复合材料以"假塑性"方式断裂,添加CNTs后,材料出现脆性断裂,且随CNTs含量的增加,脆性断裂方式更加明显。  相似文献   

7.
采用卧式高能球磨法制备0%~2%CNTs/Al5083(质量分数)复合材料,研究球磨时间和CNTs含量对复合材料性能的影响。采用扫描电镜(SEM)和透射电镜(TEM)对复合材料的形貌进行表征,测试复合材料的抗拉强度及硬度。结果表明:当球磨时间为1.5h时,CNTs可均匀分散在Al5083基体中;CNTs质量分数为1.5%时,CNTs/Al5083界面结合力最好,复合材料的抗拉强度和硬度分别为188.8MPa和136HV,比未加CNTs的Al5083合金基体分别提高了32.2%和36%。  相似文献   

8.
通过配方设计,以硅烷偶联剂改性的空心玻璃微珠(HGB)为填料,端羧基液体丁腈橡胶(CTBN)为增稠剂和增韧剂,环氧树脂(EP)为基体,经变温分段固化技术制备环氧树脂/端羧基丁腈橡胶/空心玻璃微珠(EP/CTBN/HGB)三元泡沫复合材料并研究其力学和流变性能。结果表明,CTBN使得复合材料由脆性断裂变为韧性断裂;CTBN劣化了复合材料模量而HGB弥补了复合材料模量;当CTBN、HGB含量分别为12%(质量分数)和30%(体积分数)时,三元复合材料的冲击、弯曲、拉伸强度及弯曲模量均优于纯EP。另外,纯环氧树脂和EP/CTBN共混物的黏度呈现出牛顿流体的流变行为,而三元共混物的黏度表现出明显的剪切变稀现象。  相似文献   

9.
采用碱氧一浴法对洋麻纤维(KF)进行精细化处理,并制备了不同混纺质量比的精细化处理KF-棉纤维(KF-CF)混纺织物及KF-CF/环氧树脂(EP)复合材料。通过纤维强度、细度测试和FTIR、TG、SEM研究了精细化处理对KF性能的影响,通过对KF-CF/EP复合材料力学性能分析得到最佳混纺质量比,探究了最佳混纺质量比KF-CF/EP复合材料在湿热及化学环境下的吸湿性能。结果表明:精细化处理后的KF直径降低了30.66%,拉伸模量提高了31.24%,柔软度提高了13.20%,热稳定性得到提高;当KF与CF混纺质量比为40∶60时,KF-CF/EP复合材料力学性能最优,拉伸强度为101.90 MPa,弯曲强度为189.64 MPa;在湿热环境下,时间越长,温度越高,KF-CF/EP复合材料的吸水率越高,碱性环境会导致KF-CF/EP复合材料吸水率提高。   相似文献   

10.
为增加碳纳米管(CNTs)在铝基体中的分散性,利用机械球磨-真空热压烧结工艺制备碳纳米管/铝(CNTs/Al)复合材料,采用扫描电子显微镜(SEM)、电子万能试验机和万能摩擦磨损实验机,研究了CNTs质量分数对CNTs/Al复合材料微观组织、力学性能及摩擦磨损性能的影响.结果表明:CNTs经超声波预先分散后分散性增加;当CNTs质量分数为2.0%时,复合材料中CNTs与Al粉之间表现出较好的相容性;随着CNTs含量进一步增加,CNTs团聚现象严重;热压烧结温度600℃时,随着CNTs添加量的增加,铝基复合材料的屈服强度和抗拉强度呈现出明显的先增大后降低的趋势,同时,CNTs/Al复合材料的摩擦因数和磨损率随CNTs含量的增大先减小后增加;CNTs质量分数为2.0%时,复合材料的屈服强度最大值为116 MPa,抗拉强度最大值为245 MPa,与纯Al基体相比,分别提高了78%和1.9倍.2.0%CNTs/Al复合材料可获得较好的摩擦磨损性能,其摩擦系数和磨损率呈现平缓趋势,复合材料的磨痕最浅.  相似文献   

11.
对多壁碳纳米管(MWCNTs)分别进行共价、非共价和混杂功能化改性, 然后采用溶液共混法, 将三种功能化类型的MWCNTs按不同质量分数分别加入环氧树脂(EP)制备MWCNTs/EP复合材料。通过拉伸试验和热重分析, 研究MWCNTs的功能化类型及含量对复合材料力学性能和热学性能的影响, 并对复合材料拉伸试件断面进行SEM观察分析。结果表明: 与共价功能化复合材料(MWCNTs-Epon828/EP)和非共价功能化复合材料(MWCNTs-PPA/EP)相比, 混杂功能化复合材料(MWCNTs-Epon828-PPA/EP)的力学性能和热学性能最佳。当MWCNTs质量分数为0.3%时, 其拉伸强度、弹性模量和断裂伸长率较纯EP分别提高30%, 62%和26%。   相似文献   

12.
将埃洛石纳米管(HNTs)与2-羧乙基苯基次磷酸(CEPPA)复配并用于环氧树脂(EP)阻燃改性,制备了CEPPA-HNTs/EP复合材料。研究了HNTs与CEPPA的配比对CEPPA-HNTs/EP复合材料热稳定性、阻燃性及力学性能的影响。TG分析表明,CEPPA与HNTs复配可提高CEPPA-HNTs/EP复合材料的热稳定性,促进成炭并降低分解速率。锥形量热和极限氧指数分析表明,加入HNTs可降低EP热释放速率,而CEPPA对提高EP的极限氧指数作用更显著。残炭的红外分析及SEM结果表明,燃烧过程中CEPPA与HNTs反应生成硅铝磷酸盐促进凝聚相的脱水交联,形成更致密的炭层。力学性能分析表明,当HNTs与EP和CEPPA与EP的质量比分别为6%和4%时,CEPPA-HNTs/EP复合材料的拉伸强度和冲击强度分别提高了19.4%和17.3%,冲击断面的SEM图像显示CEPPA-HNTs/EP复合材料呈韧性断裂。  相似文献   

13.
采用电泳沉积(EPD)在1k碳布表面均匀加载了碳纳米管(CNTs), 借助化学气相沉积(CVD)致密化碳布叠层预制体, 制备了EPD CNTs掺杂的二维(2D)碳/碳(C/C)复合材料。研究了EPD CNTs对2D C/C复合材料致密化过程、微观组织和弯曲性能的影响。研究结果表明: EPD CNTs在碳纤维表面呈现平面内高密度、杂乱取向分布特征, 该形貌CNTs降低了热解炭在碳纤维预制体内的沉积速率, 诱导了高石墨微晶堆垛高度(Lc)、低(002)晶面面内方向上的沉积有序度(La)热解炭的形成; EPD CNTs的掺杂可提高C/C复合材料的弯曲强度和模量: 当CNTs含量为0.74wt%时, 复合材料弯曲强度和模量可达150.83 MPa和23.44 GPa, 比纯C/C复合材料提高了31.4%和13.9%; 继续提高CNTs含量, 复合材料弯曲强度降低, 这与过高含量EPD CNTs导致复合材料密度降低有关; 同时, EPD CNTs的掺杂使得C/C复合材料断裂模式由脆性断裂转变为假塑性断裂, 复合材料断裂塑性的提高是由于EPD CNTs造成的碳基体结构的变化以及碳纤维的大量拔出。  相似文献   

14.
周敏  王光  杨子明  彭政  廖双泉  李普旺 《功能材料》2012,43(Z1):101-104
采用混酸氧化法制备表面带负电的羧基化碳纳米管分散体系,以叶酸靶向受体改性壳聚糖,通过羧基化碳纳米管与叶酸改性壳聚糖进行静电自组装,制备了生物相容性好、肿瘤靶向性高的碳纳米管/壳聚糖药物复合载体材料(FA/CS-SWCNTs).利用FTIR、XPS、SEM和TG等分析方法对相应产物的形貌和结构进行了研究.实验结果表明叶酸改性壳聚糖成功组装到羧基化碳纳米管上,热重分析显示该复合材料中壳聚糖的质量分数达到35%,其中叶酸在壳聚糖上的偶联率为8.1%,该载体材料具有良好的亲水性、安全性和靶向性等优点,有望成为新型的肿瘤靶向功能载体材料.  相似文献   

15.
为研究碳纳米管(CNTs)界面改性对碳纤维/环氧复合材料(CF/EP)抗辐照性能的影响,采用电泳沉积法将CNTs引入到CF/EP界面区域(CF-CNTs/EP)中,然后分别对CF/EP和CF-CNTs/EP进行γ射线辐照处理(γ-CF/EP和γ-CF-CNTs/EP),并对复合材料的力学性能、热学性能、耐疲劳性能和官能团变化等特性进行分析。结果表明:由于CNTs的存在,γ-CF-CNTs/EP的储能模量、玻璃化转变温度、弯曲强度和弯曲模量分别比γ-CF/EP高7. 8 GPa、4. 53℃、280 MPa和19. 2 GPa;γ-CF-CNTs/EP的耐疲劳性能优于γ-CF/EP; XPS测试发现γ-CF-CNTs/EP内部C-C键的含量急剧减少10. 88%,C-N键和C-O键的含量分别增加5. 97%和4. 44%,而γ-CF/EP无明显变化。结合断面形貌分析和裂纹扩展模型,讨论了CNTs增强复合材料抗γ射线辐射的微观结构和增强机制。以上结果证实,CNTs界面区域改性可以有效提升CF/EP的抗辐射性能。  相似文献   

16.
目的 研究超音速激光沉积增材制造CNTs/Cu复合材料的微观结构及力学性能。方法 对CNTs进行表面镀铜处理,提高它与Cu黏接相之间的润湿性,增强CNTs/Cu之间的界面结合,利用超音速激光沉积技术(Supersonic Laser Deposition,SLD)增材制备不同CNTs含量的CNTs/Cu复合材料,对比研究了CNTs含量和退火温度对CNTs/Cu复合材料微观结构及力学性能的影响规律,并采用能谱仪对拉伸断口微区进行元素分析测定。结果 SLD制备的CNTs/Cu复合材料具有优异的塑性变形能力,而强度较高的CNTs通过嵌入铜粉颗粒之间的缝隙提升了沉积质量。对复合材料微观组织进行表征发现组织无明显孔隙、致密性良好,且无烧蚀现象。CNTs的加入有效提高了CNTs/Cu复合材料的抗拉性能,并且随着CNTs含量的上升,CNTs/Cu复合材料的极限抗拉强度(Ultimate Tensile Strength,UTS)稳步上升;当CNTs质量分数为0.3%时,CNTs/Cu复合材料的UTS为36.33 MPa,是CNTs质量分数为0.05%时的1.35倍。随着退火温度的升高,CNTs/Cu复合材料的UTS表现为先增大后减小的趋势,在500 ℃时UTS达到最大值。结论 由于激光加热软化的效果与表面镀铜的包覆作用,CNTs能够均匀地分布在CNTs/Cu复合材料内部,同时明显增强复合材料内部颗粒的界面结合强度,后续的热处理有助于使材料从不稳定的机械结合逐步转换为冶金结合,显著提高复合材料的抗拉性能。  相似文献   

17.
采用有机化蒙脱土(OMMT)和碳纳米管(MWCNTs)2种纳米材料改性双酚A型环氧树脂。通过溶液共混法制备OMMT/EP、MWCNTs/EP、OMMT/MWCNTs/EP环氧树脂纳米复合材料。利用扫描电子显微镜观察了复合材料的冲击断面,测试了复合材料的力学性能和热性能,探讨了OMMT、MWCNTs增韧环氧树脂的机理。结果表明,当试样中OMMT质量分数为4%,MWCNTs质量分数为0.7%时,OMMT/EP、MWCNTs/EP和OMMT/MWCNTs/EP的冲击强度分别达到16.8kJ/m2,23.1kJ/m2,30.4kJ/m2,较未掺杂环氧树脂分别提高了16.7%,60.4%,110%。弯曲强度较未改性环氧树脂分别提高了27.54%,35.74%,54.12%。3种复合材料的热分解温度和马丁耐热温度均较未改性环氧树脂略有提高。  相似文献   

18.
采用差示扫描量热法(DSC)研究了碳纳米管(CNTs)加入量和降温速率对CNTs/接枝马来酸酐聚丙烯(PPG)/聚丙烯(PP)复合材料(CNTs/PPG/PP)的非等温结晶过程的影响,并采用Jeziorny法对DSC结果进行动力学分析。结果表明:当降温速率为20℃/min时,加入CNTs可提高复合材料的结晶温度,当CNTs加入量为1.0%(wt,质量分数)条件下,复合材料的结晶峰温度为117.6℃,比未加CNTs时提高了2.0℃,CNTs的加入同时还使得复合材料结晶度增大,结晶速率加快,且均随着CNTs加入量的增加而增大;CNTs起到了异相形核作用,改变了PP基的形核方式和晶体长大方式;降温速率的增大使得复合材料将在更低的温度下结晶,结晶度增大。  相似文献   

19.
采用高能球磨法制备了不同质量分数碳纳米管(CNTs)与Al-5%Mg(质量分数)粉末的复合粉末,用热压烧结工艺制备了CNTs/Al-5%Mg复合材料。结果表明:高能球磨法可以将CNTs均匀的分散到基体中,并与其产生良好结合;CNTs具有细化复合粉末晶粒尺寸的作用,当CNTs含量为3%时,复合粉末的平均晶粒尺寸达到最小值为63.6nm,继续增加CNTs的含量,复合粉末平均晶粒尺寸增大;当CNTs含量为2%时,复合材料的抗拉强度和硬度达到最大值,与基体材料相比分别提高了42.39%和36.5%;CNTs/Al-5%Mg复合材料的强化机制为细晶强化和载荷传递。  相似文献   

20.
李玮  程先华 《复合材料学报》2020,37(11):2789-2797
将马来酰亚胺官能化的多壁碳纳米管(CNTs)和碳纤维(CF)混合并通过CeCl3处理,得到CNTs-CF多尺度增强体,采用FTIR、XPS、SEM对增强体的表面物理化学状态进行表征;以环氧树脂(EP)为基体,通过模压法制备CNTs-CF/EP复合材料,对其力学性能和断口形貌进行分析,探讨CNTs-CF多尺度增强体对CNTs-CF/EP复合材料界面性能的影响。结果表明:通过Ce的桥接作用,可以将改性后的CNTs化学接枝在CF表面,以同时解决CF与树脂基体间界面结合弱及CNTs不易分散的问题,有效改善了增强体与基体间的界面性能。因此CNTs-CF/EP复合材料的拉伸强度和杨氏模量较CF/EP复合材料分别提高了36.76%和71.57%;较CeCl3改性CF(RECF)/EP复合材料分别提高了24.79%和52.17%。采用稀土Ce的化学接枝法成功制备出CNTs-CF多尺度增强体,为获得高级轻质树脂基复合材料提供了一种环境友好的新方法。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号