首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A distributed energy system refers to an energy system where energy production is close to end use, typically relying on small-scale energy distributed technologies. It is a multi-input and multi-output energy system with substantial energy, economic and environmental benefits. However, distributed energy systems such as micro-grids in residential applications may not be able to produce the potential benefits due to lack of appropriate system configurations and suitable operation strategies. The optimal design, scheduling and control of such a complex system are of great importance towards their successful practical realization in real application studies. This paper presents a short review and an energy systems engineering approach to the modeling and optimization of micro-grids for residential applications, offering a clear vision of the latest research advances in this field. Challenges and prospects of the modeling and optimization of such distributed energy systems are also highlighted in this work.  相似文献   

2.
Renewable energy sources and low-carbon power generation systems with carbon capture and storage (CCS) are expected to be key contributors towards the decarbonisation of the energy sector and to ensure sustainable energy supply in the future. However, the variable nature of wind and solar power generation systems may affect the operation of the electricity system grid. Deployment of energy storage is expected to increase grid stability and renewable energy utilisation. The power sector of the future, therefore, needs to seek a synergy between renewable energy sources and low-carbon fossil fuel power generation. This can be achieved via wide deployment of CCS linked with energy storage. Interestingly, recent progress in both the CCS and energy storage fields reveals that technologies such as calcium looping are technically viable and promising options in both cases. Novel integrated systems can be achieved by integrating these applications into CCS with inherent energy storage capacity, as well as linking other CCS technologies with renewable energy sources via energy storage technologies, which will maximise the profit from electricity production, mitigate efficiency and economic penalties related to CCS, and improve renewable energy utilisation.  相似文献   

3.
The possible application of high voltage direct current (HVDC) in Central Europe is where electrical energy is to be transmitted over long distances by submarine or underground cables. Examples for the calculation of network losses are given. The specific costs of energy transmission using HVDC cables are shown based on the information in the grid development plan for electricity 2019–2030. These are determined for different load levels and compared with three-phase overhead lines and cables. Alternatives to power transmission using HVDC are presented.  相似文献   

4.
To alleviate the greenhouse gas emissions by the chemical industry, electrification has been proposed as a solution where electricity from renewable sources is used to power processes. The adoption of renewable energy is complicated by its spatial and temporal variations. To address this challenge, we investigate the potential of distributed manufacturing for electrified chemical processes installed in a microgrid. We propose a multiscale mixed-integer linear programming model for locating modular electrified plants, renewable-based generating units, and power lines in a microgrid that includes monthly transportation and hourly scheduling decisions. We propose a K-means clustering-based aggregation disaggregation matheuristic to solve the model efficiently. The model and algorithm are tested using a case study with 20 candidate locations in Western Texas. Additionally, we define a new concept, “the Value of the Multi-scale Model,” to demonstrate the additional economic benefits of our model compared with a single-scale model.  相似文献   

5.
This work investigates how the flexible operation of the light industrial plants integrated in a cross-sector energy cluster with community energy systems can achieve further greenhouse gas (GHG) reductions under uncertainties associated with natural gas prices, solar irradiation, as well as heating, cooling, and electricity demand. The optimal flexible operation and design of a cross-sector integrated cluster comprising a bakery plant, a brewery, a confectionery plant, a residential building, and a supermarket under uncertainties are compared to the operation and design of systems without uncertainties. When uncertainties are considered, the overall GHG emissions of the integrated system with steady industrial production rates for all uncertainty scenarios are over 4% higher than the integrated system in the deterministic scenario (a single scenario). Flexible operation of the industrial plants, whereby production rates are varied throughout the day, contributes an additional 3% reduction in GHG emissions under uncertainties, where the GHG emissions are only 1% higher than the deterministic scenario. Additionally, the system with flexible production rates purchases over 14.3% less electricity from the grid and uses over 72.2% less natural gas for operating the backup boiler, which relies less on supplementary energy resources. This shows that optimally designed integrated systems with flexible industry production schedules are resilient to uncertainties in energy demands, daily weather fluctuations, and fuel prices.  相似文献   

6.
岳晨  史翊翔  蔡宁生 《化工学报》2011,62(3):779-785
通过对能源系统增加虚拟排放治理单元,以排放火用小成本和火用小经济学成本的形式量化终端排放的环境影响,从而来统一产品输出相同、终端排放不同的系统间热力、环境和经济(TEE)性能比较基准;其次,把排放火用小成本和火用小经济学成本按照各单元排放占联产系统终端排放的比例分摊,来考虑联产系统不同产品对应环境影响的差异,建立了一种适合联产系统的环境火用小经济学综合评价分析方法;最后,以煤气化F-T合成燃料/电联产系统为例介绍该方法应用。与常规基于热力学第一定律的技术经济方法分析结果对比表明:该方法能够以环境火用小成本的形式分析联产系统的产品能耗、成本和TEE综合效益来源。与常规火用小经济学方法分析结果对比表明:该方法可以体现联产系统终端排放对不同产品的影响差异以及联产系统TEE综合性能潜力。  相似文献   

7.
郭晓雨  田喆  牛纪德  祝捷 《化工学报》2020,71(z1):293-299
区域供冷系统主要分为源、网、用户三部分,其中管网不仅可以作为能量输送环节,还可以实现能量的储存,因此可以利用管网的储能效应实现制冷站与电网的互动。以广东惠州某园区制冷站为例,基于Modelica语言在Dymola平台上搭建了区域供冷系统。基于分时电价,应用管网的储热与延迟特性,提出三种控制策略以探讨热网在电力响应中的应用。仿真结果显示,在案例中管网储热维持室温的效果为0.31 h,利用管网储热能够使供冷系统节省6.4%的电耗和6.7%的电费,可见管网的虚拟储能效应是制冷站参与电网需求响应的重要资源。  相似文献   

8.
Achieving net zero carbon dioxide (CO2) emissions will require the cessation of fossil fuel emissions into the atmosphere, yet the need for ‘fuel’ and energy storage will remain. One solution could be a carbon-based fuel system where CO2 of biogenic origin is converted to fuels using hydrogen generated by electrolysis powered by renewable energy sources. Methane has value as an initial target given its prevalence in biogas, use in home heating and in electricity generation. Sources of CO2 in Eastern Canada are dominated by the iron and steel, cement, and aluminium industries, all of which have biogenic fuel options. Collecting all of the potentially biogenic CO2 would displace 75% of current natural gas use and require a 50% increase in generating capacity. Initial efforts could site a carbon capture, utilization, and storage facility near Montreal, QC, with other large-scale facilities near Hamilton, ON, and Lac St-Jean, QC. These facilities would be grid connected and expected to operate ~6200 h annually. The most high-frequency electrolysis events would be 10 h of run time and 2 h of idle time. These periods would peak during the equinox months and be at a minimum during the winter solstice. These operational assumptions will all be subject to the increased variability caused by anthropogenic climate change and increased renewable generation on the grid. A closed-loop carbon-based fuel system would require an equivalent price of $250 per tonne CO2.  相似文献   

9.
The potential of combining biogas and photovoltaic (PV) power plants in hybrid systems in the German distribution grid is analyzed. The focus of the present research is on balancing the intermittent power supply from PV power plants with the controllable power production of combined heat and power (CHP) units of biogas plants within a period of seconds. To achieve an increase of the total energy feed-in of biogas and PV power plants to the electricity grid, a biogas plant energy management system is described. System parameters, such as the variable feed-in of PV power plants or power ramps of the start-up process of controllable biogas plant CHP unit, are described and adapted to the global installed capacity of PV power plant and biogas plants in the German distribution grid.  相似文献   

10.
程殿彬 《氯碱工业》2002,(12):17-21
讨论了电解系统采用用电峰谷分时运行方式时的不同用电负荷情况下的运行条件、应对措施及经济效益。  相似文献   

11.
With the growing amount of decentralized power production the design and operation of the grid has to be reconsidered. New problems include the two-way flow of electricity and maintaining the power balance given the increased amount of uncertain and fluctuating renewable energy sources like wind and solar that deliver electricity to the grid.Solution directions are the development of smart grids, demand side management, virtual power plants and storage of electricity. These are directions that, rightly so, are already attracting a lot of attention and R&D funding. In this paper critical issues are identified and specified. However, we will also explore new solution directions based on an integrative approach as proposed by the Dutch Royal Academy of Science foresight committee on renewable energy conversions. These alternative solutions include flexible coproduction and local production of chemicals and fuel that can also fulfill a storage function.  相似文献   

12.
Papermaking process is highly energy-intensive, complicated, and influenced by multiple unit processes, which plays an important role in the energy consumption, especially of thermal energy and electricity energy. An energy management system (EMS) was built to acquire the systematic, consistent, and accurate online information of the production process in a typical coated paperboard mill. The EMS first fulfilled the online energy information calculation from the process data acquisition and integration, second provided the massive historical data to find out the internal variation of production process for inferring decisions. In a case study, the online energy flow analysis and the estimation of specific energy consumption (SEC) were carried out. Based on data-driven techniques, three different operation conditions were recognized by adopting the kernel principal component analysis and DBSCAN (Density-Based Spatial Clustering of Applications with Noise) when the basis weight was 220?g/m2. The energy consumption was described in each cluster. Particular attention needed to be paid to LP steam in the high-speed production process with the change in environmental temperature and humidity in cluster 3. A novel indicator was proposed to appraise the level of energy consumption in different paper machine speeds. The benchmarking SEC was extracted from the massive historical data for the estimation of energy-saving potential. With the designed capacity of 300,000 ton/year, the potential economic benefits will be 20127 thousand RMB/year.  相似文献   

13.
The current studies on power plant technologies suggest that Integrated Gasification Combined Cycle (IGCC) systems are an effective and economic CO2 capture technology pathway. In addition, the system in conventional configuration has the advantage of being more “CO2 capture ready” than other technologies. Pulverized coal boilers (PC) have, however, proven high technical performance attributes and are economically often most practical technologies. To highlight the pros and cons of both technologies in connection with an integrated CO2 capture, a comparative analysis of ultrasupercritical PC and IGCC is carried out in this paper. The technical design, the mass and energy balance and the system optimizations are implemented by using the ECLIPSE chemical plant simulation software package. Built upon these technologies, the CO2 capture facilities are incorporated within the system. The most appropriate CO2 capture systems for the PC system selected for this work are the oxy-fuel system and the postcombustion scheme using Monoethanolamine solvent scrubber column (MEA). The IGCC systems are designed in two configurations: Water gas shift reactor and Selexol-based separation. Both options generate CO2-rich and hydrogen rich-gas streams. Following the comparative analysis of the technical performance attributes of the above cycles, the economic assessment is carried out using the economic toolbox of ECLIPSE is seamlessly connected to the results of the mass and energy balance as well as the utility usages. The total cost assessment is implemented according to the step-count exponential costing method using the dominant factors and/or a combination of parameters. Subsequently, based on a set of assumptions, the net present value estimation is implemented to calculate the breakeven electricity selling prices and the CO2 avoidance cost.  相似文献   

14.
The forecasted shortage of fossil fuels and the ever-increasing effect of greenhouse gas (GHG) emissions on global warming and environmental stability are two international problems with major technical, economic and political implications in the 21st century. Therefore, it is urgent to restructure present energy production and utilization systems in order to ensure that fossil fuels are used with high efficiency and low to zero emissions. Polygeneration energy systems combine power generation and chemical fuel synthesis in a single plant (producing both electricity and fuels) and thus provide a promising alternative pathway towards achieving sustainable and flexible economic development. Mixed-Integer programming (MIP) is useful in constructing long-term decision models that are suitable for investment planning and design of polygeneration infrastructure systems. This paper presents a model for the investment planning of a polygeneration energy system and a case study addressing a system for production of methanol and electricity in China during the period from 2010 to 2035. It contains five different feedstocks and twelve polygeneration technologies.  相似文献   

15.
CO2电还原合成化学品因反应条件温和、可利用分布式清洁能源等优势成为国际热点,被视为缓解全球变暖和能源危机的有效途径之一,对该类技术潜在经济及环境效益进行系统评估,可为新技术工业应用提供重要支撑。本文以离子液体电还原CO2制甲醇工艺为例,首先进行概念设计和建模,建立了基于生命周期的工艺经济性及碳排放评价模型,获得了离子液体电还原CO2制甲醇工艺的盈利前景和碳减排潜力。通过灵敏度分析,确定了例如法拉第效率、电费及槽电压等影响工艺经济性的关键技术参数。结果表明,与传统煤制甲醇工艺相比,离子液体电还原CO2制甲醇工艺兼具一定的经济效益与碳减排潜力。在最佳假设前提下,新工艺可节约成本约11.67%。若完全采用可再生能源提供电力,则可实现生命周期内的负碳排放,即每生产1kg甲醇最高可消纳1.29kg CO2。本研究为低碳合成甲醇变革性技术的研发提供了重要参考。  相似文献   

16.
全钒液流电池关键材料研究进展   总被引:2,自引:1,他引:2  
全钒液流电池是一种新型高效电能转化与储存装置。由于其电池输出功率与储能容量彼此独立,适用于风能、太阳能等可再生能源发电过程和电网调峰过程作为规模化储能装置使用。本文在介绍全钒液流电池原理基础上,重点围绕电池过程的关键材料展开讨论,包括电极材料的种类、各自特点与电极改性方法;电池隔膜材料的筛选结果、材料改性方法等国内外研究进展。  相似文献   

17.
针对典型的户用光伏储能系统,建立了各个部件的数学模型,研究了系统的运行特性,考虑最大光伏自给率基础策略与加入谷时电网和蓄电池交互的改进策略,探究了经济性指标净现值、技术性指标光伏自给率及用户自用率与蓄电池容量的关系,绘制了经济性指标与技术性指标关系曲线,提出一种分布式光伏储能系统的容量设计方法,基于MATLAB进行全年能量流动与全生命周期经济结果分析,并针对上海市地区典型日晴天系统运行特性进行了模拟研究。结果表明,技术性指标与经济性指标随蓄电池容量变化呈现相反的变化趋势,在基础与改进策略下,蓄电池容量分别超过10.5和6.5 kW·h后,降低净现值以提升光伏自给率与用户自用率的效果逐渐减弱,因此基于蓄电容量为5 kW·h(基础策略)和6.5 kW·h(改进策略)的拐点前的曲线,依据实际需要确定系统蓄电池的容量。模拟结果表明,对于案例中的3.06 kW(峰值)的光伏系统和4.8 kW·h的蓄电池,系统较单独的光伏系统有明显的削峰填谷效果。考虑谷时蓄电池与电网交互的改进策略比基础策略有更好的技术性与经济性表现,但是系统对市电电网的传输负担会有所加重。  相似文献   

18.
The current studies on power plant technologies suggest that Integrated Gasification Combined Cycle (IGCC) systems are an effective and economic CO2 capture technology pathway. In addition, the system in conventional configuration has the advantage of being more “CO2 capture ready” than other technologies. Pulverized coal boilers (PC) have, however, proven high technical performance attributes and are economically often most practical technologies. To highlight the pros and cons of both technologies in connection with an integrated CO2 capture, a comparative analysis of ultrasupercritical PC and IGCC is carried out in this paper. The technical design, the mass and energy balance and the system optimizations are implemented by using the ECLIPSE chemical plant simulation software package. Built upon these technologies, the CO2 capture facilities are incorporated within the system. The most appropriate CO2 capture systems for the PC system selected for this work are the oxy-fuel system and the postcombustion scheme using Monoethanolamine solvent scrubber column (MEA). The IGCC systems are designed in two configurations: Water gas shift reactor and Selexol-based separation. Both options generate CO2-rich and hydrogen rich-gas streams. Following the comparative analysis of the technical performance attributes of the above cycles, the economic assessment is carried out using the economic toolbox of ECLIPSE is seamlessly connected to the results of the mass and energy balance as well as the utility usages. The total cost assessment is implemented according to the step-count exponential costing method using the dominant factors and/or a combination of parameters. Subsequently, based on a set of assumptions, the net present value estimation is implemented to calculate the breakeven electricity selling prices and the CO2 avoidance cost.  相似文献   

19.
The current studies on power plant technologies suggest that Integrated Gasification Combined Cycle (IGCC) systems are an effective and economic CO2 capture technology pathway. In addition, the system in conventional configuration has the advantage of being more “CO2 capture ready” than other technologies. Pulverized coal boilers (PC) have, however, proven high technical performance attributes and are economically often most practical technologies. To highlight the pros and cons of both technologies in connection with an integrated CO2 capture, a comparative analysis of ultrasupercritical PC and IGCC is carried out in this paper. The technical design, the mass and energy balance and the system optimizations are implemented by using the ECLIPSE chemical plant simulation software package. Built upon these technologies, the CO2 capture facilities are incorporated within the system. The most appropriate CO2 capture systems for the PC system selected for this work are the oxy-fuel system and the postcombustion scheme using Monoethanolamine solvent scrubber column (MEA). The IGCC systems are designed in two configurations: Water gas shift reactor and Selexol-based separation. Both options generate CO2-rich and hydrogen rich-gas streams. Following the comparative analysis of the technical performance attributes of the above cycles, the economic assessment is carried out using the economic toolbox of ECLIPSE is seamlessly connected to the results of the mass and energy balance as well as the utility usages. The total cost assessment is implemented according to the step-count exponential costing method using the dominant factors and/or a combination of parameters. Subsequently, based on a set of assumptions, the net present value estimation is implemented to calculate the breakeven electricity selling prices and the CO2 avoidance cost.  相似文献   

20.
崔威 《氯碱工业》2006,(10):1-2
介绍了一种优秀的国产变压整流设备,特别介绍了它所采用的三相全控桥同相逆并联连接方式,有载调压(开关粗调)、晶闸管细调运行方式。该设备已应用于日本旭化成工艺的离子膜食盐电解系统,且一次性开车成功,各项技术指标均达到(有些已经超过)行业标准,生产能力优于设计能力,并取得了显著的经济效益。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号