首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
针对遥感图像中背景复杂、小目标分布密集以及易受环境因素影响导致检测性能不佳的问题,提出一种改进的YOLOv5s目标检测算法。首先,通过设计一种混淆鉴别注意力机制(Confusion-Distinguishable Attention,CDA)来避免目标与背景之间的混淆,提高对目标信息的关注度,能够有效提升目标检测的准确性和健壮性。其次,在原结构的颈部添加小目标检测层,解决小目标分布紧密、漏检的现象,从而提高算法的多尺度目标检测性能。最后,在DOTA数据集中进行实验和验证。实验结果表明,所提算法能够明显提高遥感图像目标检测的平均准确率。  相似文献   

2.
针对红外图像分辨率低、背景复杂、目标细节特征缺失等问题,提出了一种基于YOLOv5s的改进实时红外小目标检测模型Infrared-YOLOv5s。在特征提取阶段,采用SPD-Conv进行下采样,将特征图切分为特征子图并按通道拼接,避免了多尺度特征提取过程中下采样导致的特征丢失情况,设计了一种基于空洞卷积的改进空间金字塔池化模块,通过对具有不同感受野的特征进行融合来提高特征提取能力;在特征融合阶段,引入由深到浅的注意力模块,将深层特征语义特征嵌入到浅层空间特征中,增强浅层特征的表达能力;在预测阶段,裁减了网络中针对大目标检测的特征提取层、融合层及预测层,降低模型大小的同时提高了实时性。首先通过消融实验验证了提出各模块的有效性,实验结果表明,改进模型在SIRST数据集上平均精度均值达到了95.4%,较原始YOLOv5s提高了2.3%,且模型大小降低了72.9%,仅为4.5 M,在Nvidia Xavier上推理速度达到28 f/s,利于实际的部署和应用。在Infrared-PV数据集上的迁移实验进一步验证了改进算法的有效性。提出的改进模型在提高红外图像小目标检测性能的同时,能够满足实时性要...  相似文献   

3.
为了解决道路巡检系统光学传感器采集的裂缝图像中颜色特征不明显且尺寸不规则造成检测精度不高、泛化能力不足的问题,提出改进YOLOv5s的裂缝检测算法。将结合深度可分离卷积(Depthwise Separable Convolution, DSC)的全局注意力(Global Attention Mechanism, GAM)引入主干特征提取网络,在降低注意力复杂度的同时获得丰富的跨维度特征,增强了裂缝的识别能力;采用空间金字塔软池化网络(Spatial Pyramid Softpool, SPSF),通过Softpool池化保留多维语义以减少信息弥散,提高了边界框回归的准确性;在颈部特征增强网络,运用空洞深度可分离卷积(Atrous DSC)进行下采样,通过扩大感受野加强深层和浅层信息的聚合能力,提高裂缝识别的泛化性。经过在自制道路裂缝数据集上的实验,相较于YOLOv5s,改进算法的mAP提高2.2%,有效提升了道路裂缝检测的准确性和对不同背景下裂缝识别的泛化能力。  相似文献   

4.
针对海面目标检测模型难以应用在存储能力和计算能力较小的移动端的问题,提出一种基于改进YOLOv5的海面目标检测算法。采用轻量级提取网络ShuffleNetv2 Block作为YOLOv5网络的骨干部分,减少模型计算量和参数量;使用加权双向特征金字塔网络模块替换原特征融合网络模块,提高网络对不同尺度的特征提取能力;引入坐标注意力机制,提高模型检测精度。在海面目标数据集上进行实验,结果表明:与YOLOv5模型相比,改进模型的精确率、召回率、平均精度分别提高了1.2%、1.4%、0.9%,计算量和参数量分别降低了55.8%,54.9%。改进后的YOLOv5模型不仅提高了检测精度和模型性能,还压缩了模型的计算量和参数量,有利于部署在移动设备端。  相似文献   

5.
文章针对小目标检测存在的可利用特征少、定位精度要求高、数据集小目标占比少、样本不均衡和小目标对象聚集等问题,提出将coordinateattention注意力嵌入YOLOv5模型。Coordinateattention注意力机制通过获取位置感知和方向感知的信息,能使YOLOv5模型更准确地识别和定位感兴趣的目标。YOLOv5改进模型采用木虱和VisDrone2019数据集开展实验验证,实验结果表明嵌入coordinate attention能有效提高YOLOv5的算法性能。  相似文献   

6.
针对城市道路的交通标志在真实路况中存在光照不均、遮挡等因素导致的在目标检测任务中出现参数量过多、检测速度慢等问题,文章基于原有YOLOv5s的网络框架提出一种改进后的目标检测网络Shuffle-Block,首先选用开源的CCTSDB数据集进行实验,引入Shuffle-Block模块替换YOLOv5s原始的CSPDarknet主干网络,使得YOLOv5s的网络模型轻量化,降低模型的复杂程度。  相似文献   

7.
由于盲人缺乏视觉感知能力,因此在户外独立出行时具有较大的风险。为了增强盲人户外场景下的环境感知能力,本文针对导盲系统的实际应用,提出一种基于YOLOv5s改进的导盲系统障碍物检测算法。首先,为了降低整体模型的计算量,使用MobileNetV3代替原网络的主干特征提取网络;然后,引入CA注意力机制使模型更好地关注训练过程中的有效特征;最后,采用EIoU边界框损失函数替换原模型的CIoU,优化了预测框的回归速度与精度。在服务器上进行模型验证,实验结果表明本文所提算法相较原模型计算量降低了59%,参数量降低了49.3%,同时mAP提高了2.3%,具有一定的实用价值。  相似文献   

8.
使用搭载YOLOv5算法的无人机对物体进行目标检测时,由于其权重文件占有较大内存而要求无人机有较高的硬件配置,这在很大程度上约束了无人机进行目标检测的发展。为了解决这一问题,提出了一种改进的YOLOv5算法。使用深度可分离卷积代替普通卷积层,以使YOLOv5s轻量化。由于无人机从空中俯瞰物体,拍摄的图片具有较大的视野,因此将Dropblock与注意力机制添加至YOLOv5s主卷积层的底层来增加YOLOv5s的泛化能力与识别能力,进而提高YOLOv5s的小目标检测能力。使用所提方法对车辆数据集进行训练,获得了83%的训练准确率,并通过对比试验证明了所提方法比原始YOLOv5s具有更强的小目标检测能力。  相似文献   

9.
针对目标检测任务中小目标尺寸较小、背景复杂、特征提取能力不足、漏检和误检严重等问题,提出了一种基于YOLOv8s改进的小目标检测算法——Improved-v8s。Improved-v8s算法重新设计了特征提取和特征融合网络,优化检测层架构,增强浅层信息和深层信息的融合,提高了小目标的感知和捕获能力;在特征提取网络中使用部分卷积(Partial Convolution, PConv)和高效多尺度注意力(Efficient Multi-scale Attention, EMA)机制构建全新的F_C2f_EMA,在降低网络参数量和计算量的同时,通过通道重塑和维度分组最大化保留小目标的特征信息;为了更好地匹配小目标的尺度,优化调整SPPCSPC池化核的尺寸,同时引入无参注意力机制(Simple-parameter-free Attention Module, SimAM),加强复杂背景下小目标特征提取;在Neck部分使用轻量级上采样模块——CARAFE,通过特征重组和特征扩张保留更多的细节信息;引入了全局注意力机制(Global Attention Mechanism, ...  相似文献   

10.
针对水下目标检测识别精度低的问题,提出了一种基于改进YOLOv5的水下目标检测方法。通过对比多个注意力机制模块,在YOLOv5骨干网络引入了全局注意力机制模块,增强了特征提取,提高了采集特征的能力,并在YOLOv5模型上融合了自适应空间特征融合算法,实现底层特征与顶层特征融合。验证结果表明,所提算法的识别精度优于原始的YOLOv5算法,平均精度提升了8.5%,检测速度为76帧/秒。  相似文献   

11.
针对目前主流的目标检测算法存在模型参数过大、不能很好地移植到移动设备端之中应用于辅助驾驶这一问题,本文提出了一种改进YOLOv5s的目标检测算法。首先,将YOLOv5s算法的主干网络CSPDarknet替换为轻量化网络模型MobileNet-V3,解决了网络模型较大、参数较多的问题,减少了网络的深度并提升了数据推断速度;其次,对特征提取网络采用加权双向特征金字塔结构Bi-FPN加强特征提取,融合多尺度特征进而扩大感受野;最后,对损失函数进行优化,使用CIoU为边界框回归损失函数,改善模型原始GIoU收敛速度较慢问题,使预测框更加符合于真实框,同时降低网络训练难度。实验结果表明,改进后算法在KITTI数据集上的mAP相较于YOLOv5s、SSD、YOLOv3、YOLOv4_tiny分别提升了4.4、15.7、12.4、19.6,模型大小相较于YOLOv5s与轻量级网络YOLOv4_tiny分别减少了32.4 MB和21 MB,同时检测速度分别提升了17.6%与43%。本文改进后的算法满足模型小、精确度高的要求,为辅助驾驶中道路目标检测提升检测速度与精度提供了一种解决方案。  相似文献   

12.
为实现无人农机在行驶过程中对田间移动型障碍物的实时检测,提出一种基于YOLOv5s的目标检测模型,用于检测田间行人和其他协同作业的农机设备。该目标检测模型以YOLOv5s模型为基础框架,进行了以下三点改进:第一,为了减少模型的参数量和计算复杂度,提高推理速度,将YOLOv5s网络模型中的卷积模块和C3模块替换为Ghost卷积和C3Ghost模块;第二,为了弥补模型参数量减少所造成的精度下降的损失,提升对目标的检测能力,在主干网络输出的特征层中引入CBAM注意力机制;第三,采用BiFPN特征金字塔结构,实现多尺度特征加权融合。实验结果表明,YOLOv5s模型的参数量为7.02×106,计算复杂度为15.8GB,平均检测精度为94%,生成权重文件大小为13.7MB,单幅图像的检测速度为71.43 f/s;改进后的模型参数量为4.04×106,下降了42.45%,计算复杂度缩减为8.5 GB,平均检测精度达到了93.2%,仅仅下降了0.8%,权重文件大小为8.1 MB,单幅图像的检测速度为77.52 f/s。以上数据证明,改进后的模型能够满足对田间移动型障碍物的实时检测,且更加易于部署到移动...  相似文献   

13.
针对无人机航拍时拍摄的对象大小不一、种类繁杂且容易被建筑遮挡等问题,提出了一种基于YOLOv5s的无人机目标检测改进算法VA-YOLO。在已有的主干网络中添加CA注意力机制模块,扩大检测区域,获得更准确的位置信息;针对检测小目标时尺度不一导致语义丢失的问题,添加小目标检测层与BiFPN结构,加深浅层语义与深层语义结合,以此丰富对检测目标的语义信息;使用损失函数Varifocal loss与EIoU,改善模型对小目标检测的准确性。实验结果表明,在VisDrone2019-DET数据集上,该算法的平均检测精度(mean Average Precision, mAP)达到了39.01%,相比YOLOv5s提高了6.26%。  相似文献   

14.
铁轨轨枕表面出现的裂纹可能对轨道交通造成安全隐患。针对铁轨裂纹检测的方法存在通用性差、精度低、召回率低的问题,提出一种基于改进YOLOv5s的铁轨裂纹检测算法YOLOv5s-CBE。首先将CA注意力模块分别加入主干C3模块以及C3与SPPF之间,从通道和空间两个维度捕获通道关系和位置信息,提高YOLOv5s主干网络特征提取能力。其次,在YOLOv5s的Neck部分,使用BiFPN融合不同尺度信息,获取拥有丰富语义信息的输出特征图;同时,加权双向特征融合金字塔结构通过引入权重调整不同尺度输入特征图对输出的贡献,优化特征融合效果,减少了卷积过程中特征信息的丢失,提高了检测精度。最后,将原YOLOv5s中损失函数CIoU改为EIoU。EIoU不仅考虑了中心点距离和纵横比,而且还考虑了预测框与真实框宽度和高度的真实差异,提高了锚框的预测精度。相较于原始网络YOLOv5s,YOLOv5s-CBE铁轨裂纹检测网络在自制铁轨裂纹数据集上,模型大小相较于基础网络YOLOv5s降低了1.0 MB,精度mAP提高了3.7%,召回率由73.5%提升到76.2%,不同尺寸裂纹的漏检现象减少,具有一定的优越性和...  相似文献   

15.
现有PCB缺陷检测方法的精确率较低而且模型复杂度也较高.针对这个问题,提出了基于改进YOLOv5s的Deep PCB缺陷检测算法.该算法在颈部网络(Neck)的C3层后添加了卷积注意力模块(Convolutional Block Attention Module,CBAM),对小目标的检测建立特征映射关系,对特征图进行注意力重构,赋予了小目标更高的特征权重,提高网络对印刷电路板(Printed Circuit Board,PCB)图像中小目标的特征提取能力.为了从根本上解决目标特征冗余的问题,实现网络的轻量化,并且确保网络检测的精确度,提出使用Ghost Conv模块替换Conv模块,同时将C3模块改为Ghost Bottleneck模块.使用有效交并比损失(EIOU Loss)函数代替完全交并比损失(CIOU Loss)函数,减小了预测框宽高与置信度的真实差值,减少了网络的回归损失.使用上海交通大学图像处理与模式识别研究所公开的Deep PCB数据集开展实验,结果表明本文算法相较于YOLOv5s,在IOU=0.5时,mAP提升了6.8%,速度提升了4.7 Fps,模型大小减少了2.9...  相似文献   

16.
针对在现有轨枕裂纹检测中传统检测方法检测效率低和精度差的问题,本文提出一种基于YOLOv3改进算法的轨枕裂纹检测模型.首先,通过灰度投影法对原始有砟道床图像中的轨枕区域进行定位和分割;其次,将挤压与激活模块和空间金字塔池化引入改进的网络模型中,有效抑制轨枕图像中其他冗余的特征干扰,空间金字塔池化保证了原始图像的比例,对...  相似文献   

17.
海上弹着点水柱信号是评判射击效果的重要依据,因此在进行训练、演习等任务时快速、准确地获取水柱信号检测情况具有重要意义。结合海上水柱信号多尺寸、多形态的特点,对YOLOv5算法进行改进,提出了CAs-YOLOv5s算法。在输入端加入mixup数据增强策略,以线性插值的方式构建新的训练样本和标签,不需占用过多的存储空间就可以丰富样本信息;引入了坐标注意力机制,将位置信息嵌入通道注意力中,增强模型的特征提取能力;同时,将原YOLOv5s算法中空间金字塔池化模块中的池化方式由Maxpool替换为Softpool,保留更多的细粒度特征信息,放大更大强度的特征激活。在目标数据集上的实验结果表明,改进后的CAs-YOLOv5s算法平均准确率提高了4.54%,达到94.75%,速度达到23.51帧/s,在满足实时性要求的情况下可以更好地完成海上弹着点水柱信号的检测任务。  相似文献   

18.
19.
20.
针对低光照环境下现有的目标检测算法普遍存在检测精度较低的问题,提出一种改进YOLOv5的双通道低光照图像目标检测算法(YOLOv5_DC)。首先,通过伽马变换和叠加高斯噪声的方法合成低光照图像,扩充数据集,提高模型的泛化能力;其次,提出特征增强模块,引入通道注意力机制,融合增强图像和原始图像的低级特征,抑制噪声特征的影响,改善网络的特征提取能力;最后,在颈部网络中加入特征定位模块,增加特征图在目标区域的响应值,使网络更关注目标区域,提高网络的检测能力。实验结果表明:所提YOLOv5_DC算法实现了更高的检测精度,在低光照图像目标检测数据集ExDark*上的平均精度均值(mAP)@0.5达71.85%,较原始的YOLOv5算法,提高了1.28个百分点。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号