首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
采用正交试验,研究在选区激光熔化快速成形的过程中,激光功率P、扫描速度v、铺粉厚度h以及扫描间距s4个参数对TC4钛合金成形件上表面粗糙度、侧面粗糙度和表面硬度的影响规律。研究表明,4个参数对上表面粗糙度影响的重要次序为激光功率、扫描速度、铺粉厚度、扫描间距;对侧面粗糙度影响的重要次序为激光功率、铺粉厚度、扫描速度、扫描间距;对表面硬度影响的重要次序为激光功率、铺粉厚度、扫描间距、扫描速度。试验可得形成TC4成形件表面质量的最佳工艺参数为:激光功率200 W,扫描速度600 m/s,铺粉厚度0.04 mm,扫描间距0.06 mm。  相似文献   

2.
增材制造(3-D打印)作为一种近净成形技术,为钛合金薄壁件高质量毛坯制造提供了新途径,但在薄壁件成形过程中产生的变形与残余应力会影响试件的成形质量与后续加工。为了解决这一问题,采用激光选区熔化成形TC4钛合金薄壁件,研究了激光功率、扫描速率、薄壁厚度和扫描路径方向对试件变形与残余应力的影响,测量了试件不同深度的表面残余应力。结果表明,变形主要在薄壁件顶层两侧,最大残余应力主要分布在试件底层与薄壁件中间;当激光功率为180W、扫描速率为1200mm/s时,试件变形最小;当壁厚为0.6mm、扫描路径方向45°时,试件残余应力最小;薄壁件的未处理表面残余应力大于内层表面残余应力。该研究为钛合金薄壁高质量毛坯制造提供了技术帮助。  相似文献   

3.
针对新型铁颗粒增强型氧化铝陶瓷涂层在激光熔覆原位制造过程中的热应力对涂层质量的严重影响,研究了激光诱导反应条件下钛合金表面原位制备单道复合涂层过程中的热力问题。采用代表体积元方法仿真计算该新型涂层的热力学参数。利用生死单元法与内部生热热源相结合的方法建立了激光诱导铝热反应热源模型,分析了不同工艺参数组合下涂层构件热应力分布规律。结果表明:热应力主要集中在涂层及其与基板的结合面处,涂层上沿熔覆方向的拉应力是导致涂层出现横向裂纹的主要原因。由于激光诱导铝热反应,涂层的裂纹以及残余应力随着激光功率和激光扫描速度的增加而增加。在激光功率600 W、扫描速度2 mm/s时,涂层裂纹最少;在扫描速度5 mm/s、激光功率300 W时,残余应力最小。  相似文献   

4.
王凯  李多生  叶寅  罗军明  龙思海  官冀原  谢非彤  姜苏航  王明娣  吴宁 《红外与激光工程》2022,51(12):20210936-1-20210936-9
激光清洗以绿色、安全、便于控制等优点,在航空航天、电子、交通等领域有着重要的应用价值。采用纳秒脉冲激光清洗航空2A12铝合金表面TB06-9涂层,研发了一种新型的两步法无损激光清洗工艺。运用扫描电子显微镜、能谱仪,超景深三维显微镜和万能电子实验机等分析激光清洗涂层。结果表明,第一步采用单次激光清洗,随激光功率的增加,试样表面涂层逐渐减少裸露出氧化层及基材。激光功率为40 W时氧化层保留完好,功率为45 W时氧化层开始出现损伤,随着功率的增加,损伤逐渐增多。最终确定第一步优化参数为激光的频率为20 kHz,功率为40 W,扫描速度为1040 mm/s,线间距为0.052 mm。第二步在第一步的基础上进行多次清洗,获得的优化参数为激光频率为1000 kHz,功率为80 W,扫描速度为690 mm/s,线间距为0.034 5 mm。两步法激光清洗试样的表面与原始试样表面形貌相似,表面显微硬度及抗拉强度基本保持一致,较好地保留了材料的原有力学性能。  相似文献   

5.
以通过激光熔覆修复钛合金薄壁件并在钛合金表面获得优质激光熔覆涂层为目标,运用ANSYS软件对同步送粉式激光熔覆的温度场进行了三维建模数值模拟。基于该模型对激光熔覆过程中的温度场分布和工艺参数进行了分析。结果表明,激光扫描方向前方的表面温度场相比后方熔池温度小,等温线密集,温度梯度大,熔覆两道后熔覆道1没有重熔,并且对熔覆道2产生预热作用。激光加工的快速加热和冷却的特性显著,冷却时的冷却速度可达104℃/s,在其他工艺参数不变的情况下,理论上在激光功率P=1100 W,扫描速度v=4 mm/s,光斑直径d=1 mm 时模拟过程可获得良好的冶金结合,为修复薄壁零件提供了借鉴和指导作用。  相似文献   

6.
根据激光熔覆生物陶瓷涂层的特点,选择二维带状热源模型,研究计算了材料物理性能在不同温度下的变化曲线,并建立温度场模型。将实验制备的涂层从涂层外观、显微硬度、涂层与基体的结合强度、涂层物相等方面对比模拟结果与实验结果,从而论证模型的可靠性。根据模拟结果可得:激光功率与扫描速度均会影响熔池深度,且激光功率的影响大于扫描速度;根据模拟的变化趋势分析,选择的激光熔覆的工艺参数为功率P=1700 W,扫描速度V=165 mm/min。模拟预测了不同涂层厚度、工艺参数条件下的熔池深度。  相似文献   

7.
已知不同的激光参数组合可在不锈钢表面产生同种颜色,为探究参数和颜色之间的确定性关系,选用波长为1064 nm、最大输出功率为20 W的主控振荡器功率放大器(MOPA)光纤激光器进行实验研究,通过分光光度计对彩色样品的色彩、可见光谱进行采集分析,利用扫描电子显微镜对彩色样品的氧化膜厚度和表面形貌进行测量。结果表明,激光扫描速度、激光重复频率和激光功率按比例同时改变,可在不锈钢表面产生极其相似的色彩和氧化膜。该研究对激光彩色打标的实际应用具有较大的指导意义。  相似文献   

8.
针对TA7 ELI钛合金开展激光选区熔化(SLM)成形工艺研究,获得激光功率P、扫描速度V对致密度的影响规律,进一步分析激光能量密度对缺陷的影响,并基于最佳成形工艺参数开展显微组织及力学性能分析。研究表明,SLM成形TA7 ELI致密度随激光功率P的升高先增加后降低,随着激光能量密度增加先增加后降低。当激光功率P为280 W、扫描速度V为1 000 mm/s、扫描间距H为120μm、铺粉层厚t为30μm时,成形试样致密度最高为99.89%,此时激光能量密度为78 J/mm3。SLM成形TA7 ELI沿着沉积方向为外延生长柱状晶,垂直沉积方向为等轴晶组织,晶内由平行或交错分布的细小针状α′马氏体组成。TA7 ELI沉积态抗拉强度超过1 050 MPa,延伸率达到15%,拉伸断口均匀密集分布等轴韧窝,表现为典型的韧性断裂特征。  相似文献   

9.
陈妮  闫博  李振军  李亮  何宁 《中国激光》2020,(12):127-134
构建了高斯脉冲激光线刻蚀能量密度分布模型,研究了激光功率和脉冲数对化学气相沉积(Chemical Vapor Deposition,CVD)金刚石表面上的点/线尺寸的影响规律,得到了能量在材料表面的扩散机理及刻蚀面组分,并在此基础上进行了激光面刻蚀。结果表明:高斯单脉冲激光作用下刻蚀轮廓近似为高斯曲面,间接证明了激光束在材料表面作用的能量呈高斯分布,且刻蚀面由金刚石、石墨和杂化物质构成,CVD金刚石表面的脉冲点刻蚀深度和宽度都随着激光功率和脉冲数的增大而增大。激光功率对CVD金刚石表面线刻蚀程度的影响较大,当功率值增大12 W时,刻蚀宽度和侧面扫入深度分别增大23.32μm和346.04μm;激光扫描速度则对CVD金刚石表面线刻蚀程度的影响相对较小,当扫描速度增大49.8 mm/s时,刻蚀宽度和侧面扫入深度分别减小了6.35μm和70μm。在功率为3 W、扫描速度为50 mm/s和扫描间距为2μm的条件下进行了激光面刻蚀,刻蚀深度为9.71μm,表面粗糙度为1.10μm。  相似文献   

10.
采用纳秒脉冲光纤激光器对5083铝合金阳极氧化膜进行清洗,对清洗试样的表面形貌、表面粗糙度、元素组成和含量、清洗率及清洗机制等进行分析。研究表明,脉冲频率影响扫描振镜方向的光斑搭接率,激光行进速度影响清洗方向的光斑搭接率,在过高的激光能量下清除氧化膜时会造成基体二次氧化。工艺参数对表面粗糙度的影响规律不同,表面粗糙度随单脉冲能量的增加先增大后减小,随脉冲频率的增加出现两次先减小后增大,随激光行进速度的增加先增大后减小再增大。当单脉冲能量为100 mJ、脉冲频率为9.67 kHz、扫描振镜速度为4000 mm/s、激光行进速度为6.5 mm/s时,5.27μm厚的氧化膜几乎被清洗干净,表面粗糙度为Sa=0.608μm,优于机械打磨表面粗糙度(1.18μm),清洗率达97.14%,与参数优化前相比清洗率提升了2.43%。激光清除5083铝合金氧化膜的机制为热烧蚀、弹性振动剥离和孔洞爆破。  相似文献   

11.
建立激光辐照铝材料的有限元分析模型,对材料表面的温度场进行数值模拟。研究了激光光束在对材料表面扫描过程中激光扫描速度、TEM00及TEM10两种理想模式的叠加比例η的取值、材料厚度等因素对扫描结果的影响。分析了在材料上所取的几个目标点的温度场变化情况。仿真结果表明扫描的速度快慢决定了材料表面可以吸收激光能量的多少,影响材料的最高温度;η的取值决定了激光光束的能量分布情况,η值越高激光光束能量越集中,在扫描过程中目标点的温度变化越剧烈;随着深度的增加,材料内部的温度的最高值逐渐降低,温度的升高趋势逐渐趋于平缓。  相似文献   

12.
采用选区激光熔化(SLM)工艺成型TC4钛合金,运用双因素控制变量法,从输入体能量密度方面,研究了激光功率P、扫描速度V对多层成型件致密度和表面硬度的影响规律。试验结果表明:当单位体积粉末输入体能量密度φ为119.05~166.67 J/mm~3时,成型件致密度可达到96.62%~97.41%,表面显微硬度达到415.2~425.4 HV,高于成型前粉末微粒显微硬度335.4 HV。在激光功率P=200 W、扫描速度V=600 mm/s、铺粉厚度H=0.04 mm、扫描间距S=0.06 mm时,成型件致密度达到97.41%,表面显微硬度达到440.5 HV,成型的钛合金件具有良好的力学性能。  相似文献   

13.
采用波长为1064 nm、脉宽为1μs的脉冲激光器对2024铝合金表面漆层进行激光清洗工艺试验,研究扫描速度、脉冲频率、激光功率对激光清洗漆层质量的影响规律,通过清洗表面形貌、漆层断裂横截面、清洗过程中收集的颗粒的形貌、清洗表面元素价态的变化,以及有限元模拟的温度场与应力场分布,深入分析了激光清洗漆层的过程与作用机制。结果表明:扫描速度、脉冲频率、激光功率均会不同程度地影响激光除漆质量,激光清洗质量随着扫描速度、脉冲频率的增加而先增加后降低,随着激光功率的增加而变好,在激光功率为16.5 W、扫描速度为600 mm/s、脉冲频率为30 kHz的条件下,能够达到较好的激光清洗质量;不同工艺参数下激光清洗漆层的作用机制存在差异,其中内聚力破坏机制和裂纹扩展断裂机制是激光清洗漆层的主要作用机制。  相似文献   

14.
研究了激光工艺参数的波动对钛合金表面着色稳定性的影响,以及不同激光工艺参数下钛合金表面色块的微观形貌和元素组分。在钛合金表面制备了橙、金、蓝、绿、紫等5种颜色的色块,通过重复实验获得各种成色稳定的色块对应的扫描速度、功率和线间距,实现了在20 J/cm2左右的较低激光能量密度下,在钛合金上获得欧几里得距离?E*ab<7的稳定颜色。分析了激光工艺参数在等量或等比变化下的成色稳定性,结果表明,在间隔为1μm的线间距扰动下,?E*ab值的波动最大,不利于稳定成色。从样本的微观形貌、结构、元素组分等方面分析了不同色块的微观结构和元素组分差异,结果表明,激光作用后,样本表面分别形成了裂纹状、团块状有明显差异的两种微结构,且氧、碳元素含量区别明显。激光诱导钛合金表面着色是激光作用于材料表面形成的热效应导致的材料升温与表面钛氧化物形成共同作用的结果。  相似文献   

15.
铜基金属粉末选区激光烧结的工艺研究   总被引:7,自引:1,他引:7  
顾冬冬  沈以赴  吴鹏  杨家林  王洋 《中国激光》2005,32(11):561-1566
优化工艺参数(激光功率275~1125W,扫描速率0.04~0.06m/s,扫描间距0.15~0.30mm),对多组份铜基金属粉末(组份包括纯Cu,预合金CuSn和预合金CuP)进行了选区激光烧结(SLS)实验,其成形机制为粉末部分熔化状态下的液相烧结机制。在保证适宜的成形机制的前提下,研究了激光功率、扫描速率、扫描间距、铺粉厚度等工艺参数对烧结组织及性能的影响。结果表明,适当增加激光功率或减小扫描速率能改善烧结致密度及组织连续性。减小扫描间距致使烧结线从断续分布连续转变为较为平整的结合状态,组织致密性及均匀性显著提高。减小铺粉厚度有利于改善层问结合性;但最小铺粉厚度需适当选择,否则会因凝固收缩效应及铺粉不均匀性而降低烧结致密度。  相似文献   

16.
底才翔  孙艳军  王菲  陈燨  丁伟 《激光技术》2020,44(5):628-632
为了揭示激光切割碳纤维复合材料过程中温度场的分布规律、材料对能量的吸收和传递规律以及热影响区的形成机制,采用碳纤维复合材料为研究对象,建立激光切割碳纤维复合材料的多物理场模型,计算仿真了激光切割碳纤维复合材料过程中温度场分布及激光参量对碳纤维复合材料温度和热影响区影响规律,得到了激光切割碳纤维复合材料过程中的3维温度场分布。结果表明,激光切割过程中,碳纤维复合材料表面温度场近似为椭圆形,且碳纤维复合材料中能量的传递和扩散主要沿着碳纤维铺设方向;激光功率20W、光斑半径100μm、切割速率50mm/s的激光沿垂直于碳纤维铺设方向切割时,激光光斑作用处碳纤维温度远低于树脂层温度;随着切割光斑半径和激光功率的增加,碳纤维复合材料中最高温度逐渐增加,热影响区逐渐增大;随着切割速率的增加,碳纤维复合材料中最高温度逐渐减小,热影响区逐渐变小。该研究为了解激光切割碳纤维复合材料过程中的热损伤机理及材料高质高效的加工提供了一定的理论指导。  相似文献   

17.
采用纳秒脉冲激光器对TC4钛合金表面的氧化膜及油污进行激光清洗,研究了扫描速度对清洗后试样表面形貌、成分、元素含量及价态的影响规律,并分析了扫描速度对表面粗糙度、硬度和耐腐蚀性能的影响。结果表明:当扫描速度为500 mm/s时,激光对基体的损伤大且会发生热氧化,表面形成TiO,O含量较高。随着扫描速度由3000 mm/s增加至10000 mm/s,表面逐渐变得光滑平整,O含量先降低后升高,Ti含量则先升高后降低。当扫描速度为9000 mm/s时,表面Ti含量(质量分数)达到最大值84.24%,O含量(质量分数)降至最小值4.54%,且粗糙度(Ra)最低约为0.907μm,清洗效果最佳。扫描速度的增加使清洗后表面的粗糙度先升高后降低。此外,激光清洗可使TC4钛合金表面的硬度和耐腐蚀性能有所提高。  相似文献   

18.
为了探究不同激光功率及扫描速度下水导激光加工技术对镍基单晶高温合金加工微孔的影响规律及规律形成机理。使用自主研发的水导激光加工平台对镍基单晶高温合金CMSX-4在不同激光功率及扫描速度下进行1 mm微孔的加工。然后采用白光干涉仪、扫描电子显微镜和Vision64软件获得微孔加工时间、孔径、圆度、锥度及重铸层厚度随不同激光功率及扫描速度的变化规律,并研究变化规律的形成机理。结果表明,加工时间、锥度及重铸层厚度与激光能量强度有关。随着激光能量强度的增大,加工时间缩短,锥度变小,重铸层厚度变小。孔径和圆度受激光能量强度及其在材料表面分布的影响。仅当激光能量作用范围控制在水束直径范围下时,孔径及圆度相应获得较好的加工质量。  相似文献   

19.
以TC4钛合金粉末为试验材料,以熔覆层宽高比作为响应指标,研究激光功率、扫描速度和送粉速率对熔覆层宽高比的影响,通过响应面法建立工艺参数与熔覆层宽高比之间的数学模型,获得优化的工艺参数。试验结果表明,激光功率和送粉速率对熔覆层宽高比的影响较大,熔覆层宽高比与激光功率呈正比,与送粉速率呈反比。优化的工艺参数为:激光功率2 500 W,扫描速度14.42 mm/s,送粉速率0.6 r/min。经试验验证,熔覆层宏观形貌质量良好,响应面预测值与实际值误差为3.7%。  相似文献   

20.
CO2激光直写诱导碳基前驱体生成石墨烯过程中,温度与应力是影响石墨烯生成质量的主要因素。利用COMSOL Multiphysics仿真软件,建立连续CO2激光作用于聚酰亚胺(PI)薄膜温度场与应力场模型,研究激光功率、光斑直径、扫描速度对平均升温速率(δ)及热应力的影响,并根据石墨烯生成温度阈值与薄膜受损温度阈值筛选出合理参数范围。仿真结果表明:在重复扫描策略下,薄膜正面平均升温速率δ1与激光功率呈线性正相关关系,与光斑直径呈指数下降关系,与扫描速度呈幂函数单调递减关系,δ1的较优范围为93.6℃/s≤δ1≤147.8℃/s;背面平均升温速率δ2与激光功率呈线性正相关规律,与光斑直径呈二次函数单调递减规律,与扫描速度呈线性负相关规律,δ2的较优范围为69.5℃/s≤δ2≤86.9℃/s。激光功率是影响热应力的主要因素,仿真结果与结论可为PI薄膜激光诱导石墨烯研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号