共查询到20条相似文献,搜索用时 15 毫秒
1.
CO2光催化还原转化为有价值的碳氢燃料和化工原料是达成“碳中和”目标的重要途径。金属有机框架材料(MOFs)是一种由有机配位体和金属离子或团簇通过配位键形成的有机-无机杂化材料,具有超高的比表面积、可调的孔结构,并易于功能化修饰,在CO2光催化还原反应中展现出良好的应用前景。总结了基于MOFs的新型功能材料绿色光催化CO2还原的最新研究进展,探讨了改性及功能化MOFs材料及MOFs衍生物的光催化CO2还原反应机理,并从理化特性上分析了材料性能优势的成因。总结了提高光催化还原CO2反应的活性和选择性的策略。在此基础上,对这类新型催化剂面临的主要问题和未来发展进行了总结与展望。 相似文献
2.
3.
采用溶剂热法合成制备含Co、Mn双金属节点的MOF-74材料,研究了室温下对NO的吸附性能,并通过IAST和穿透实验研究了材料的吸附选择性。结果表明,双金属Mn0.2Co0.8-MOF-74具有典型的MOF-74晶体结构,对NO的吸附量达到160.3cc/g,比单金属Mn-MOF-74提高了约19.4%。在低吸附分压时,NO/CO2的理想溶液吸附(IAST)理论吸附选择性最大可达到397,经过5次循环吸附-脱附实验后的再生性能优良。模拟烟气的双组分穿透实验中,Mn0.2Co0.8-MOF-74对NO/CO2的吸附分离性能达到35.5,可以作为一种优良的NO吸附分离材料。 相似文献
4.
制备具有高比表面积的二维多孔h-BN材料是实现高效CO2吸附的主要途径之一。采用氯化镁(MgCl2)和氯化钾(KCl)作为熔盐反应介质,以硼砂(Na2B4O7)和三聚氰胺(C3H6N6)为主要原料,制备了二维多孔h-BN材料,研究了熔盐种类及合成温度对产物的组成、形貌、孔隙结构及CO2吸附性能的影响。研究结果表明,以KCl为熔盐得到h-BN与r-BN共存的产物,以MgCl2为熔盐得到纯度更高的h-BN材料。相较于KCl,以MgCl2为熔盐能显著提升h-BN材料的比表面积,并将二维h-BN材料的合成温度降低至1 000℃。当合成温度为900℃时,以MgCl2为熔盐得到的h-BN材料比表面积最高且CO2吸附性能最好,分别为281.78 m2/g和7.69 cm3/g... 相似文献
5.
采用浸渍法制备了以γ-Al2O3为载体的CaO/γ-Al2O3吸附剂,并在自制吸附剂评价装置上,研究了不同CaO负载量对CaO/γ-Al2O3吸附剂吸附性能的影响。利用XRD及BET对CaO/γ-Al2O3吸附剂的物相及结构进行了表征。实验结果表明,CaO/γ-Al2O3吸附剂对CO2有较好的吸附性能,并且CaO/γ-Al2O3吸附剂的比表面积、孔容随着CaO负载量的增大而减小。当CaO的负载量为25%(wt,下同)时,CaO/γ-Al2O3吸附剂的静吸附容量达到最大值,4.95mol/kg。 相似文献
6.
7.
金属有机框架(MOFs)材料在CO2的捕获与分离方面受到广泛关注。本工作结合分子动力学(MD)和巨正则蒙特卡洛(GCMC)模拟方法探究了一种MOFs材料DUT-49的负性气体吸附过程及结构转变对CO2/N2吸附分离行为的影响。结果表明: 在20~60 MPa的压强下, DUT-49均发生可稳定存在的结构变形, 实现开孔(DUT-49-op)和闭孔(DUT-49-cp)状态的转变。DUT-49气体吸附量随温度升高而下降。DUT-49-cp的框架收缩, 气体有效吸附位点减少, 吸附量明显降低。此外, 与DUT-49-op相比, DUT-49-cp中CO2/N2选择性明显降低, 且随温度升高而下降, 不利于气体分离。本工作的研究结果为吸附剂材料的开发提供了科学依据。 相似文献
8.
9.
金属有机框架(MOFs)是一种重要的多孔无机-有机杂化材料,具有优异的物理化学特性。由于MOFs材料的合成受多种复杂因素的影响,从而导致不能有效控制MOFs材料的性质(如组成、形态和表面积),因此MOFs材料的可控合成对其应用具有重要意义。介绍了影响MOFs材料合成的主要因素,如金属离子、有机配体、反应体系的条件等。 相似文献
10.
采用浸渍法将两种离子液体负载在A型和B型硅胶上,研究了硅胶种类和活化温度、离子液体种类和负载量、吸附剂孔径分布(PSD)等对CO2吸附效率的影响。结果表明,制得的吸附剂均具有发达的微孔结构,在0.4~0.8nm连续分布;A型硅胶经500℃活化,且[bmim]PF6用量为20%(质量分数)时,负载样品具有较好的CO2吸附性能,273K和0.1 MPa时为3.68%(质量分数);载体中引入[bmim]PF6,可以协同提高负载样品的CO2吸附量和CO2/N2选择性,且吸附速率高于纯[bmim]PF6。 相似文献
11.
TEPA-AM修饰的介孔材料吸附CO2性能的研究 总被引:1,自引:0,他引:1
将丙烯酰胺(AM)改性的四乙烯五胺(TE-PA)负载到介孔材料孔道内,形成氨基改性的CO2吸附材料。利用X射线衍射(XRD)、氮气物理吸附-脱附(BET)、红外等方法对样品进行了表征。通过动态吸附法研究了材料的CO2吸附和脱附性能,并与TEPA负载的吸附材料进行了比较。研究结果表明,在制备介孔分子筛MCM-41的过程中得到的一种结构规整度低的材料对TEPA-AM具有较好的分散性能,经过TE-PA-AM修饰的该材料表现出良好的CO2吸附性能,当TEPA-AM负载量达60%,该材料的吸附能力达到159.1mg/g;经过12次循环使用吸附量不下降。 相似文献
13.
环糊精金属有机框架材料(CD-MOFs)是一种绿色环保的新型金属有机框架材料,但由于其水稳定性差,在实际应用中受到了限制。通过交联CD-MOFs和柠檬酸(CA)来提高环糊精基MOFs的水溶液稳定性。研究制备了CA改性的CA-γ-CD-MOF复合材料,并作为吸附剂从水溶液中去除阳离子染料结晶紫。在15mg CA-γ-CD-MOF用量、20℃、pH 6和60mg/L初始结晶紫浓度下,CA-γ-CD-MOF对结晶紫的平衡吸附能力为79.86mg/g,相应的清除率达到99.83%。此外,CA-γ-CD-MOF在经过3次吸附解吸循环,吸附率仍达第一次的98%以上,表现出良好的再生能力。动力学和吸附等温线研究表明,吸附遵循拟二阶动力学,CA-γ-CD-MOF吸附结晶紫是一种自发的单层吸热过程。因此,CA-γ-CD-MOF是一种高效、绿色、可循环利用的吸附剂。 相似文献
14.
15.
研究了有机胺固载3D蠕虫状介孔二氧化硅MSU-J的表面结构、介孔类型、氮含量以及吸附温度对CO_2吸附性能的影响,并采用傅里叶红外光谱、透射电镜、N_2吸附/脱附、热重分析和元素分析等方法研究了介孔结构和CO_2吸附性能。结果表明,采用浸渍法对MSU-J进行氨基改性的效率明显高于接枝法,产物具有较高的CO_2吸附量,且水化处理后介孔MSU-J表面的Si-OH得以再生使氨基的负载量增加,CO_2吸附量从43.2mg/g增加到52.6mg/g。与SBA-15相比,氨基改性后MSU-J的CO_2吸附量从28.4 mg/g增加到154.5 mg/g,远大于前者的23.4~65.4mg/g。吸附温度对MSU-J吸附CO_2的影响很大,且随吸附温度降低,吸附量升高,在室温时达最大值125mg/g,故MSU-J的低温吸附性能优异。 相似文献
16.
金属有机框架(MOFs)是一类无机-有机配位的多孔材料。与传统吸附剂相比,MOFs具有结构可设计性、功能多样性、比表面积大和孔隙率高等优点,可通过前合成和后修饰法调节孔径大小、引入特定官能团或活性位点,实现快速、高效地分离水中的重金属离子和放射性核素,对资源回收和环境修复意义重大。本文详述了MOFs吸附砷、铬和汞等重金属离子,吸附铀和锝等放射性核素的研究现状及作用机理,总结了提高MOFs吸附性能的方法,提出了MOFs作为重金属和放射性核素吸附剂时亟需解决的问题。 相似文献
17.
CO2在分子筛中会与阳离子M及骨架氧原子Oz形成M-O=C=O⊥Oz的吸附结构。理论计算表明,随着阳离子半径与极化率的增大,Li+、Na+和K+与单个CO2相互作用势能最小时M-O距离按0.200、0.241、0.281 nm顺序增大,且最小势能值减小。分子模拟发现,不同CO2吸附量下,分子筛中吸附结构M-O距离均满足LiX< NaX< KX,且LiX、NaX和KX中M-O径向分布函数峰值位置分别为0.205、0.248、0.289 nm,吸附结构势能分别为-57.9、-53.1、-41.3 kJ/mol。分子模拟与理论计算吻合较好,说明了吸附结构的变化可由单个阳离子与CO2相互作用的最小势能点的变化来反映。此外,CO2模拟吸附量满足LiX> NaX> KX,与吸附结构能量关系一致,表明不同阳离子通过影响分子筛吸附结构中M-O距离来影响吸附结构能量,从而影响其CO2吸附能力。 相似文献
18.
CO2在分子筛中会与阳离子M及骨架氧原子Oz形成M-O=C=O⊥Oz的吸附结构。理论计算表明,随着阳离子半径与极化率的增大,Li+、Na+和K+与单个CO2相互作用势能最小时M-O距离按0.200、0.241、0.281 nm顺序增大,且最小势能值减小。分子模拟发现,不同CO2吸附量下,分子筛中吸附结构M-O距离均满足LiX< NaX< KX,且LiX、NaX和KX中M-O径向分布函数峰值位置分别为0.205、0.248、0.289 nm,吸附结构势能分别为-57.9、-53.1、-41.3 kJ/mol。分子模拟与理论计算吻合较好,说明了吸附结构的变化可由单个阳离子与CO2相互作用的最小势能点的变化来反映。此外,CO2模拟吸附量满足LiX> NaX> KX,与吸附结构能量关系一致,表明不同阳离子通过影响分子筛吸附结构中M-O距离来影响吸附结构能量,从而影响其CO2吸附能力。 相似文献
19.
CO2在分子筛中会与阳离子M及骨架氧原子Oz形成M-O=C=O⊥Oz的吸附结构。理论计算表明,随着阳离子半径与极化率的增大,Li+、Na+和K+与单个CO2相互作用势能最小时M-O距离按0.200、0.241、0.281 nm顺序增大,且最小势能值减小。分子模拟发现,不同CO2吸附量下,分子筛中吸附结构M-O距离均满足LiX< NaX< KX,且LiX、NaX和KX中M-O径向分布函数峰值位置分别为0.205、0.248、0.289 nm,吸附结构势能分别为-57.9、-53.1、-41.3 kJ/mol。分子模拟与理论计算吻合较好,说明了吸附结构的变化可由单个阳离子与CO2相互作用的最小势能点的变化来反映。此外,CO2模拟吸附量满足LiX> NaX> KX,与吸附结构能量关系一致,表明不同阳离子通过影响分子筛吸附结构中M-O距离来影响吸附结构能量,从而影响其CO2吸附能力。 相似文献
20.
近年来,纳米有机杂化材料(NOHMs)引起了广泛的研究。不同于捕集CO2的传统胺基溶剂,NOHMs可以在不含任何溶剂的条件下保持类液性,具有可忽略蒸汽压和高热稳定性的特点,因此可以减少溶剂挥发带来的损失以及环保问题,同时减少了对设备的腐蚀,是一种有潜力的替代传统胺基溶剂的吸收剂。同时NOHMs可直接作为吸附剂吸附CO2,也可作为添加剂和其他材料产生协同作用,比如作为分离膜中的掺杂剂加入到聚合物基质中制备混合基质膜,可以显著强化CO2在膜内的传质速率,实现CO2的高效捕集。本文概括了NOHMs在碳捕集领域的研究进展,分别针对共价键和离子键连接的两类NOHMs阐述其核心、内冠、外冠三部分对CO2吸附性能的影响,探讨和归纳了核心的尺寸、孔隙率、含量以及冠层的密度、链长和结构等对NOHMs碳捕集能力的影响机制,总结了以上因素与焓效应和熵效应的对应关系,以及对碳捕集性能的作用。本文将为拓宽NOHMs在CO2捕集领域的应用提供参考与新的研究思路。 相似文献