首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
崔丹凤  李渊凯  范燕云  范正  陈红梅  薛晨阳 《功能材料》2020,(10):10202-10208+10215
采用两步水热法制备了以泡沫镍作为基底的Co3O4@MnMoO4复合材料,利用SEM、TEM、XRD、比表面积分析仪分别对材料的形貌、尺寸和结构与纯Co3O4纳米棒团簇进行了对比。在2.5 mAcm-2的电流密度下,Co3O4和Co3O4@MnMoO4作为电极时的比电容分别为436和663.75 F/g。与Co3O4纳米棒团簇相比,Co3O4@MnMoO4复合材料具有更好的电容性能和良好的超级电容器应用潜力。这是由于其具有比Co3O4纳米棒团簇更高的电子/离子转移速率、更多的电活性反应位点和更大的电解质浸润面积。  相似文献   

2.
本研究采用水热法制备了质量比为2∶1的CoFe2O4/石墨烯(CoFe2O4/graphene)复合物,利用XRD、FT-IR和TEM对样品的结构和形貌进行了表征,采用循环伏安法(CV)和恒电流充放电测试研究了其电化学性能。结果表明,CoFe2O4均匀的分布在石墨烯表面,粒径大约为10nm。在0.5A/g的电流密度下,比电容为105F/g。1000次循环后,电容保持率在90%以上。  相似文献   

3.
利用水热法,以硝酸钴为原料,分别以碳酸氢铵、六次甲基四胺为沉淀剂,制备了Co3O4。借助X射线衍射、扫描电子显微镜手段对样品进行表征。以六次甲基四胺为沉淀剂制得的Co3O4,在6 mol.L-1KOH水溶液中,电位窗口为0~0.4V内,通过循环伏安和恒流充放电测试,显示该材料制备的电极具有良好的电容行为。充放电流在为5 mA时,单电极的比容量达到239 F.g-1,是以碳酸氢铵为沉淀剂制得的Co3O4电极的1.57倍,说明以六次甲基四胺为沉淀剂制备的Co3O4具有较好的电化学电容性能。  相似文献   

4.
汤宏伟  张蕾  司艳丽  常照荣 《功能材料》2013,(19):2814-2818
采用溶胶-凝胶法制备得到Na x Co2O4(x=1.0、1.2、1.4、1.6、1.8和2.0)样品,并首次将其应用于超级电容器电极材料;经XRD、SEM和电性能研究得出,制备出的Na x Co2O4晶体均为层状结构,x=1.6时样品电容性能最好,在6mol/L NaOH电解液中,0.25~0.7V电压范围内,以50mA/g的电流密度进行恒流充放电,比电容高达413F/g。  相似文献   

5.
通过水热法在不同反应温度、一定反应时间条件下制备用于超级电容器的Mn3O4,同时实现Y的掺杂和复合石墨烯。通过X射线衍射(XRD)、扫描电子显微镜(SEM)和电化学工作站对样品的形貌、结构与电化学性能进行分析,发现其与标准PDF卡89-4837相吻合,为单一相的Mn3O4,属四方晶系,空间群为I41/amd(No.141)。所制得Mn3O4为棒状颗粒。Y掺杂含量为5%时Y-Mn3O4的比电容可以达到89 F·g^-1,Y-Mn3O4/石墨烯复合材料的比电容可达到267F·g^-1,并且它们的循环伏安曲线为矩形形状,说明Y的掺杂和石墨烯的负载协同提高了Mn3O4的电化学性能。  相似文献   

6.
汤宏伟  高宁  常照荣  李苞  杨祎 《功能材料》2012,43(23):3282-3285
采用化学共沉淀法合成了纳米级NiCo2O4/C复合材料,并以X射线衍射(XRD)、扫描电镜(SEM)对样品进行了结构和形貌的表征,结果表明,合成的复合材料为立方尖晶石结构,其粒径大小为30~40nm,颗粒呈球形且分布均匀。循环伏安(CV)、恒电流充放电测试表明,NiCo2O4/C复合材料在6mol/LKOH水系电解液中表现出优异的超级电容特征,在0~0.9V的电位范围内,NiCo2O4/C电极材料比电容量可高达290.49F/g,并具有良好的可逆性和优异的循环性能。  相似文献   

7.

多价铜基氧化物的理论比容量较高,但自身导电性和稳定性差;石墨相氮化碳(g-C3N4)稳定性好、氮含量高、合成方法简单,但其电容性能不佳;生物质炭具有较大的比表面积、相对较好的导电性和刚性结构。为使各相优势得到充分发挥,并且尽量弥补其缺陷,本文以尿素为g-C3N4前驱体,杏鲍菇为模板诱导合成了具有疏松多孔结构的g-C3N4/C两相复合材料,后使用水热法将CuO均匀负载在g-C3N4/C表面及孔洞内得到CuO-g-C3N4/C三相复合材料。电化学测试结果表明,CuO-g-C3N4/C的最高比电容为262.8 F/g,相似文献   


8.
9.
采用一步水热法合成NiCo2S4和NiCo2S4/CNTs复合材料,通过进行XPS、XRD以及SEM对NiCo2S4、NiCo2S4/CNTs复合材料进行物理表征,采用三电极测试体系在电化学工作站上进行电化学测试。测试结果表明:通过掺杂CNTs改变了NiCo2S4的形貌结构,NiCo2S4在1 A/g电流密度下,比电容可以达到830 F/g,在10 A/g的大电流密度下,比电容保持率仅为78.3%;而NiCo2S4/CNTs复合材料在10 A/g下的比电容保持率可达到78.6%,并且在3 A/g电流密度下循环1000次,比电容保持率高达98.2%。  相似文献   

10.
在不同的反应时间下水热法控制制备发射状超级电容器用MnO2电极材料,采用X射线衍射光谱(XRD)、扫描电镜(SEM)表征其结构,采用循环伏安、恒流充放电和交流阻抗研究其电化学电容性能。结果表明,制备的MnO2为隐钾锰矿型,具有发射状结构,随着反应时间的延长,MnO2的晶型从不完善逐渐变得完善,发射状结构逐渐明显、增大,并且MnO2辐射出的每根单枝从较细的纳米刺逐渐生长为四方结构的纳米棒;在5mA/cm2的电流密度下,最高比电容达到了448F/g;随着反应时间的增加,MnO2电极的比容量先增长再降低。  相似文献   

11.
通过对活性炭进行Pb(II)吸附、PbSO4沉积等处理,制备了PbSO4/活性炭复合材料,并对其进行表征。结果表明,200 nm以下的PbSO4晶体均匀地分散在活性炭颗粒表面,Pb的质量分数为26.43%。将PbSO4/活性炭复合材料制备成电极,在H2SO4电解液中进行的电化学性能测试结果表明,该材料具有较高的析氢过电位,并能提供一定的Faraday电流,非Faraday比容量有所损失。将氧化铅粉量5%的PbSO4/AC添加到电池负极铅膏中,所制得的电池在60%SOC下的高倍率循环寿命比普通铅蓄电池提高了3-4倍。  相似文献   

12.
以硫酸锰为原料合成出球状MnCO3作为前驱体,加入KMnO4,通过化学沉淀法成功制备出粒径范围在0.5~1.0μm的核壳结构MnCO3@Mn3O4球形颗粒。通过对比实验发现,MnCO3、KMnO4和盐酸的添加量对最终产物的形成有很大的影响。电化学性能测试表明,核壳结构MnCO3@Mn3O4球形颗粒兼有双电层电容和赝电容特性,其最大比电容可以达到156F/g。  相似文献   

13.
通过水热法制备了一种单质镍掺杂Co3O4(Ni/Co3O4)的粉末,用伏安特性循环法研究了其电化学性能,同时根据第一性原理从原子尺度和电子结构的角度探究了Ni和Co3O4的掺杂机理。首先合成Ni/Co3O4粉末;其次对合成的材料结构及性能进行XRD和SEM表征分析,研究不同钴源及同一钴源不同钴镍比对制备的镍Ni/Co3O4形貌的影响;最后在不同缺陷和不同掺杂的影响下,建立准确的材料性能预测模型,揭示了修饰电极掺杂改性的微观机理。结果表明,不同钴源均制备出了花状形貌的Ni/Co3O4复合材料,电化学性能测试得到其比电容为670F/g;第一性原理计算所得掺杂机理,揭示了电化学修饰的Ni/Co3O4复合电极较大提高了材料的导电性能。  相似文献   

14.
采用不添加任何表面活性剂的水热法,在适当反应温度和反应时间下制备出了直径尺寸大约为300nm左右,厚度约为30nm左右的六边形Co3O4纳米片.利用X射线衍射仪(XRD)、扫描电镜(SEM)和透射电镜(TEM)研究了产物的结构、组成及形貌,利用电化学工作站仪器测试了Co3O4的电化学性能.结果表明:制备的六边形Co3O4纳米片具备良好的电化学性能,单位比电容达到了110F/g,可以作为良好的超级电容器应用材料.  相似文献   

15.
以热膨胀还原石墨烯为载体,采用超声辅助浸渍法制得一系列石墨烯担载SnO2纳米复合材料。利用X射线衍射(XRD)和透射电子显微镜(TEM)分析其微观结构,同时使用循环伏安法研究其相应电化学行为。结果表明:随浸渍时间延长,SnO2逐步占据石墨烯表面原有活性位(如含氧官能团和晶格缺陷),使其担载密度显著提高。但SnO2纳米颗粒对复合体系的赝电容贡献较小,同时其对石墨烯活性位具有掩蔽作用,反而导致石墨烯电容性能逐步下降。可见,石墨烯表面活性位对热膨胀石墨烯的电容性能起重要作用。  相似文献   

16.
以正硅酸乙酯(TEOS)为硅源,聚乙烯吡咯烷酮(PVP)为助纺剂,采用静电纺丝结合碳热还原制备出结晶度较高的β-SiC纤维,其比表面积为92.6 m2/g,表现出双电层电容储能特征,比电容为155.7 F/g。然后,利用水热法在SiC纤维表面生长出大量直径约为15 nm的NiCo2O4纳米线,得到NiCo2O4纳米线/SiC复合纤维。测试表明,NiCo2O4纳米线/SiC复合纤维中镍和钴元素分别以Ni2+/Ni3+和Co2+/Co3+价态形式存在,由于NiCo2O4纳米线与SiC纤维的协同作用,NiCo2O4纳米线/SiC复合纤维比电容显著提高,并表现出双电层和赝电容并存的特征,比电容可达300.3 F/g,当功率密度为58.1 W/kg时,NiCo2O4纳米线/SiC复合纤维能量密度为60.1 W·h/kg。   相似文献   

17.
AlPO4包覆对LiVOPO4电化学性能的影响   总被引:1,自引:0,他引:1  
以LiVOPO4、Al(NO3)3.9H2O、H3PO4为原料,采用溶胶-凝胶法制备了AlPO4包覆的LiVOPO4粉末(AlPO4包覆LiVOPO4)。采用热重与差热分析、X射线衍射分析、扫描电镜分析以及电化学测试等手段对AlPO4包覆LiVOPO4的微观结构、表面形貌和电化学性能进行了研究。结果表明,AlPO4以无定形态包覆于LiVOPO4颗粒表面形成AlPO4包覆LiVOPO4粉末。由于在LiVOPO4颗粒表面包覆了一层无定形的AlPO4后,阻止了电极与电解质溶液之间的副反应,降低了电化学阻抗,因此,与未包覆的LiVOPO4粉末相比,AlPO4包覆LiVOPO4具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。  相似文献   

18.
通过水热路径引入表面活性剂十二烷基磺酸钠在泡沫镍上成功合成出比表面积较大、超薄多孔的MgCo2O4纳米线。研究表明,MgCo2O4纳米线展示出紧密交织透明的网格状结构且在5 A/g的电流密度下,比电容高达2128 F/g。在40 A/g的情况下循环6000周次后,比电容保持了原始容量的98.4%。将该纳米线和活性炭分别作为正极和负极组装成非对称超级电容器,其比电容可达65.32 F/g且在功率密度为338.95 W/kg下能量密度可达20.41 Wh/kg。上述结果表明该非对称超级电容器是一个较好的储能装置,在实际应用中拥有良好的潜力。  相似文献   

19.
采用免模板水热法和500℃下的热处理过程制备了Co3O4-NiO复合材料.通过TG-DSC、XRD和SEM对复合材料的物相结构和形貌进行了表征,结果表明:复合材料中Co3O4和NiO的晶型分别为立方相和菱形结构,而且还具有特殊的花状结构.采用循环伏安、恒流充放电以及交流阻抗法测试了复合材料在6mol·L-1的KOH电解液中的电化学性能,结果表明:水热法制备的Co3O4-NiO复合材料具有很好的赝电容储能特性,比电容可达362.5F·g-1.  相似文献   

20.
用水热合成法和冻干操作制备石墨烯/聚苯胺/二氧化锰三元复合材料(rGO/PANI/MnO2),使用X射线衍射(XRD)、X射线光电子能谱(XPS)和扫描电子显微镜(SEM)对其进行了表征。结果表明,用这种简单高效的方法制备的复合材料,具有相互交联的网络状结构和自支撑特性。在反应过程中MnO2与聚苯胺形成不规则的块状结构,共沉积在石墨烯自组装形成的网络片层上。这种复合材料具有良好的电容性能,比电容为388 F·g-1(0.5 A·g-1),优于单纯的石墨烯(rGO,234 F·g-1)和聚苯胺电极(PANI,176 F·g-1)。使用这种复合材料作为正极、rGO作为负极组装的一种不对称超级电容器,能在0~1.6 V范围内可逆循环,功率密度为17.48 W·kg-1时最大能量密度为13.5 Wh·kg-1。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号