首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using a confined fluidized bed reactor and aromatization catalysts (LBO-A and LBO-16), the aromatization performance of Shenghua fluid catalytic cracking (FCC) gasoline has been studied in an orthogonal method. The experimental results reveal that the optimum reaction condition for the light oil yield was reaction temperature 420°C, WHSV 40 h-1, mass ratio catalyst to oil 4 and 75% LBO-A and 25% LBO-16; the optimum reaction condition for aromatics amount in the light oil was reaction temperature 420°C, WHSV 30 h-1, mass ratio catalyst to oil 5 and 65% LBO-A and 35% LBO-16, the olefin content is remarkably reduced from about 54.7% to 12.8% and 8.7% (by mass), respectively, at the same time the reaction mechanism of aromatization reaction is put forward based on the experimental result.  相似文献   

2.
Abstract

Using a confined fluidized bed reactor and aromatization catalysts (LBO-A and LBO-16), three fluid catalytic cracking (FCC) narrow fraction gasoline (Lanlian gasoline, Shandong gasoline, and Fushun gasoline) at 420°C has been studied. The results reveal that at 420°C and a mass ratio of catalyst to oil of 5, the olefin content is remarkably reduced from about 20 to 30% (by mass) over 75% LBO-A and 25% LBO-16, and the octane number is kept at a high level after the aromatization reaction, at the same time the nine lumps model of aromatization reaction is put forward based on the corresponding mechanism. The method obtained can provide the technical instruction for the petroleum chemical plant.  相似文献   

3.
Using a confined fluidized bed reactor and aromatization catalysts (LBO-A and LBO-16), three fluid catalytic cracking (FCC) narrow fraction gasoline (Lanlian gasoline, Shandong gasoline, and Fushun gasoline) at 420°C has been studied. The results reveal that at 420°C and a mass ratio of catalyst to oil of 5, the olefin content is remarkably reduced from about 20 to 30% (by mass) over 75% LBO-A and 25% LBO-16, and the octane number is kept at a high level after the aromatization reaction, at the same time the nine lumps model of aromatization reaction is put forward based on the corresponding mechanism. The method obtained can provide the technical instruction for the petroleum chemical plant.  相似文献   

4.
将LBO-A和LBO-16催化剂进行复合,在小型固定流化床实验装置上,对催化裂化汽油进行了催化改质的正交实验研究,考察了反应温度、重时空速、剂油比和催化剂复合比例对反应的综合影响.  相似文献   

5.
Abstract:

By using Shenghua liquefied petroleum gas, FCC gaoline as a feedstock, LBO-A and LBO-16 as catalysts, and a confined fluidized bed as a reactor, the aromatization reaction of liquefied petroleum gas and FCC gasoline has been studied in an orthogonal method, and the nine lumps model has been put forward based on the aromatization reaction of liquefied petroleum gas. A mathematical method obtained is first introduced to study the relationship of various products of aromatization, and it is beneficial to know the mechanism and kinetics of the aromatization reaction to adapt to the necessity of industrialization.  相似文献   

6.
The paper introduces the influence of the aging temperature of catalysts and different ratios of LBO-16 and LBO-A on the aromatization reaction of Lanlian fluid catalytic cracking (FCC) gasoline. How the aromatization reaction mechanism takes place is mainly described on the surface of LBO-16 and LBO-A catalysts; at the same time, a nine-lump model of the aromatization reaction is put forward based on the corresponding mechanism. The method obtained can provide technical instruction for a petroleum chemical plant. Published in Russian in Neftekhimiya, 2006, Vol. 46, No. 2, pp. 110–115. The text was submitted by the authors in English.  相似文献   

7.
Abstract

In this article, the influence of reaction conditions on the aromatization over nano-HZSM-5 zeolite catalyst was investigated. The experimental results showed that nano-HZSM-5 catalyst has the best aromatization properties under the optimal conditions: reaction temperature 430°C, reaction pressure 0.3 MPa, and liquid hourly space velocity 1 h?1. At the optimal operational conditions, the conversion of olefins in the feedstock was 76.15%. Aromatics yield and the content of olefins, content of aromatics, and content of isoparaffins in liquid product were up to 84.98%, 12.11%, 39.58%, and 35.23%, respectively.  相似文献   

8.
在小型固定流化床实验装置上,以大庆常压渣油为原料,采用华北石化公司第Ⅱ套催化裂化装置的平衡剂为催化剂,在反应温度480~490 ℃、剂油质量比为6、空速为20 h-1的条件下,考察加入助剂LBO-A对催化裂化反应的影响。结果表明,随助剂LBO-A加入量的增加,重油裂化能力降低,汽油收率和液体收率减少,但汽油中芳烃含量增加;当助剂LBO-A加入量为10%时,催化裂化产品分布较合理,汽油中烯烃质量分数降低到20%以下,汽油中芳烃含量增加4.2个百分点。  相似文献   

9.
Abstract

We prepare a catalyst for FCC gasoline polymerizing to produce diesel oil, which uses non-noble metal Ni as the main active component; here mesopore γ-Al2O3 is used as the carrier. The effects of mass fraction of active components and the condition of preparing were investigated simultaneously. The results show that mass fraction of the main active component is 8%, soakage time is 6 hr, and the roasting temperature is 500°C to roast for 4 hr, which are better conditions for preparing the catalyst. Under the condition of a reaction temperature of 210°C, reaction pressure is 3.0 Mpa, space velocity is 1.0 h?1, and volumetric percent of diesel is 42.0%, which meet a criterion of ?35# diesel. At the same time we study the stability and regeneration of the catalyst with good results.  相似文献   

10.
以降烯烃催化剂LBO-16为主催化剂,在提升管反应器中对稀土催化裂化助燃剂RE-Ⅲ反应性能进行了评价。结果表明,在反应温度为500℃,时间为1.95 s,催化剂/原料油(质量比)为5.6,RE-Ⅲ助燃剂用量为3 500×10^-6的条件下,轻质油和总液收率分别增加了1.160,.22个百分点,汽油烯烃体积分数增加了1.85个百分点,转化率和研究法辛烷值变化不大,烟气中一氧化碳体积分数下降3.39个百分点。  相似文献   

11.
Abstract

In order to fulfill the requirement of environmental protection, experimentation of reducing FCC gasoline olefin content and optimization of the process operating conditions were studied in a small fixed vector. Under the action of a macroporous molecular sieve catalyst, which consists of active composition of Ni and Mo metal in β-zeolite supporter, when the reaction temperature was 140°C, reaction pressure was 2.0 MPa, and space velocity was 1.0 h?1–2.0 h?1, aromatization reactions, isomerization reactions, and hydrogen transfer reactions happened, so that the olefin, benzene, and arene in product gasoline were no more than 35%, 2.5%, and 40%, respectively. The octane number of petroleum is slightly increased. And it overcomes the disadvantage of losing octane by hydrogenation process. The catalyst could be regenerated using a multi-cycle with an average running cycle of about 96 hr. The results show that the process reaction condition is relaxation, process is non-hydrogenation, process flow is simple, technical and economic target is advanced, benefit is high, and cost is low.  相似文献   

12.
Abstract

Zinc and phosphorus incorporated HZSM-5 catalyst was prepared by adopting incipient wet co-impregnation (Zn-P/HZSM-5). Zn-P/HZSM-5 catalyst exhibited the lowest acidity but the highest aromatization activity with stable performance in the studied period of 16 hr. The process conditions on aromatization reaction and the coke deactivation mechanism of Zn-P/HZSM-5 catalyst were studied on a small-scale, fixed bed reactor using FCC naphtha (75–120°C). The weight contents of ZnO and P2O5 were 2% and 4%, respectively. Results showed that Zn-P/HZSM-5 catalyst under a temperature of 450°C, liquid hourly space velocity of 1.0 h?1, and pressure of 0.1 MPa, the conversions of olefins and alkanes are 96.77% and 88.94%, respectively, the contents of olefins, aromatics in liquid product are 6.79% and 74.57%, respectively. Carbon deposition was the major reason for catalyst deactivation due to the catalyst's good performance as a fresh catalyst after regeneration. All of the blending products fitted the standards of Chinese gasoline.  相似文献   

13.
By using Shenghua liquefied petroleum gas, FCC gaoline as a feedstock, LBO-A and LBO-16 as catalysts, and a confined fluidized bed as a reactor, the aromatization reaction of liquefied petroleum gas and FCC gasoline has been studied in an orthogonal method, and the nine lumps model has been put forward based on the aromatization reaction of liquefied petroleum gas. A mathematical method obtained is first introduced to study the relationship of various products of aromatization, and it is beneficial to know the mechanism and kinetics of the aromatization reaction to adapt to the necessity of industrialization.  相似文献   

14.
Abstract

The reaction conditions include temperature, weight hourly space velocity (WHSV), catalyst loading amount Ga and Si/Al, vapor, calcination temperature, soaking order, pretreatment, oxygen, and microwave heating method. The study introduces the influence of aromatization reaction conditions over HZSM-5 catalyst in detail. The proper temperature, low weight hourly space velocity (WHSV), modified HZSM-5, non-oxygen and microwave heating method are beneficial to the aromatization reaction.  相似文献   

15.
Hydrocracking tail oil is used in hydrogenation modification in the hydrocracking process and is an ideal material to produce lube-based oil. Through investigating the effect of operation conditions on properties of dewaxing products under atmospheric pressure, the optimum operation conditions are that reaction temperature is 360°C, volume space velocity is 1.0 h?1, and distillation temperature is 140°C. Under the optimum condition, the yield of liquid products is higher, and the flash point, pour point, and viscosity of white oil are stable and meet the factory product requirements. Especially, properties of alkane and white oil change little when reaction time is 20 h, which indicates that HZSM-5/Al2O3 has better stability. When HZSM-5 molecular sieve catalyst was loaded by pseudo-boehmite, HZSM-5/Al2O3 catalyst activity and stability improved and became more beneficial to nonhydrodewaxing reaction of hydrocracking tail oil.  相似文献   

16.
Abstract

The catalyst SiO2/γ-Al2 O3 treated by micro-wetness air to produce lubricating base oil was studied in this article. The satisfactory reaction temperature, the treatment temperature, and the proper content of active composition was researched. Under the best reaction conditions with a reaction temperature of 170°C, a reaction pressure at 6.0 Mpa, the volume velocity at 0.5 h?1. The polymerization of α-olefin was performed at a microreactor and produced lubricating base oil with the kinetic viscosity at 38.19 mm2 · s?1, the bromine number at 5.78 g(Br) · (100 g)?1, and the pour point at ?43.0°C. Then the structure of the catalyst was determined by Brunauer, Emmett and Teller (BET) technology. The result shows that when the optimal micro-wetness air was 45°C, the reaction temperature was 800°C, and the amount of active composition was 12%, and the catalyst has high catalytic activity and wide market prospect.  相似文献   

17.
ABSTRACT

Iraqi reduced crude (350°C+) with a sulfur content of 4.3 wt% and a total metal content (Ni+V) of 141 WPPM was n-heptane deasphalted at specified conditions. The deasphalted oil (97.2 wt% of original residue) contains 4.1 wt% of sulfur and 103 ppm of metal. The original reduced crude and deasphalted oil were hydrotreated on a commercial Ni-Mo-alumina catalyst presulfided at specified conditions in a laboratory trickle-bed reactor. The reaction temperatures varied from 300 to 420°C with the liquid hourly space velocity (LHSV) ranging from 0.37 to 2.6 h?1. Hydrogen pressure was kept constant throughout the experiments at 6.1 MPa, with a hydrogen/oil ratio of about 300 NLL?1 (normal liters of hydrogen per liter of feedstock). Analysis for sulfur, nickel, vanadium and n-pentane asphaltenes were carried out for hydrotreated products from both the original residue and the deasphalted oil. The comparison of the results obtained for the hydrotreatment of deasphalted oil and original reduced crude indicates that the removal of sulfur, nickel and vanadium was higher for the deasphalted oil than those obtained for the non-deasphalted residue over the entire range of conversion. The exclusion of extremely high molecular weight asphaltenes by n-heptane deasphalting seems to improve the access of oil into catalyst pores resulting in higher desulfurization and conversion of the lower molecular weight asphaltenes. The sulfur content of n-pentane precipitated asphaltenes remained unchaneed with LHSV for various temperature for hydrotreated products produced from both deasphalted oil and original reduced crude.  相似文献   

18.
在自制的微反-色谱联合实验装置上,改变反应温度、停留时间、剂油比等反应条件,考察了助剂LBO-A对抚顺催化裂化汽油改质反应的影响。以LBO-A助剂为催化剂时,催化裂化汽油改质反应的优化操作条件为:反应温度420℃~450℃,停留时间0.024s,剂油比6。在450℃的优化条件下,催化裂化汽油改质后,烯烃质量分数由40.74%降至25.80%,异构烷烃和芳烃含量有较大幅度的增加,计算辛烷值RON提高了5.48个单位,汽油收率降低了14.25个百分点,液化气收率提高了13.52个百分点。  相似文献   

19.
Abstract

The aromatization reaction of liquefied petroleum gas has been studied by using Huabei liquefied petroleum gas as raw material and LBO-A as catalyst, and the four lumped kinetics models network have been put up forward on the basis of lumped theory and the aromatization reaction mechanism. In the network, the aromatization reaction species were firstly lumped into C4, propylene, low-molecular hydrocarbon, liquid, and coke. A mathematical method is first introduced to study on the product distribution of liquefied petroleum gas aromatization reaction. The results from experimental data are in accordance with the quantitatively analytical conclusions drawn from the calculated data.  相似文献   

20.
ABSTRACT

With gradual shortage in the supply of crude oil, the importance of producing synthetic crude oil from oil sands and shale oil is increasing day by day. In the present paper, the effects of various process variables such as temperature, liquid hourly space velocity and hydrogen/heavy gas oil volumetric ratio on the removal of sulfur compounds from oil sands derived heavy gas oil has been studied. The experiments have been carried out in a micro scale trickle bed reactor over a commercial Ni–Mo catalyst. The temperature, liquid hourly space velocity and hydrogen/heavy gas oil volumetric ratio have been varied from 365 to 415°C, 0.5 to 1.9 h?1 and 400 to 1000 ml, respectively. Under optimum reaction conditions over 96% conversion of sulfur compounds was achieved. The kinetics of the rate of sulfur removal from the oil sands derived heavy gas oil has also been discussed in this article.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号