首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using a confined fluidized bed reactor and aromatization catalysts (LBO-A and LBO-16), the aromatization performance of Shenghua fluid catalytic cracking (FCC) gasoline has been studied in an orthogonal method. The experimental results reveal that the optimum reaction condition for the light oil yield was reaction temperature 420°C, WHSV 40 h-1, mass ratio catalyst to oil 4 and 75% LBO-A and 25% LBO-16; the optimum reaction condition for aromatics amount in the light oil was reaction temperature 420°C, WHSV 30 h-1, mass ratio catalyst to oil 5 and 65% LBO-A and 35% LBO-16, the olefin content is remarkably reduced from about 54.7% to 12.8% and 8.7% (by mass), respectively, at the same time the reaction mechanism of aromatization reaction is put forward based on the experimental result.  相似文献   

2.
By using Shenghua liquefied petroleum gas, FCC gaoline as a feedstock, LBO-A and LBO-16 as catalysts, and a confined fluidized bed as a reactor, the aromatization reaction of liquefied petroleum gas and FCC gasoline has been studied in an orthogonal method, and the nine lumps model has been put forward based on the aromatization reaction of liquefied petroleum gas. A mathematical method obtained is first introduced to study the relationship of various products of aromatization, and it is beneficial to know the mechanism and kinetics of the aromatization reaction to adapt to the necessity of industrialization.  相似文献   

3.
Abstract:

By using Shenghua liquefied petroleum gas, FCC gaoline as a feedstock, LBO-A and LBO-16 as catalysts, and a confined fluidized bed as a reactor, the aromatization reaction of liquefied petroleum gas and FCC gasoline has been studied in an orthogonal method, and the nine lumps model has been put forward based on the aromatization reaction of liquefied petroleum gas. A mathematical method obtained is first introduced to study the relationship of various products of aromatization, and it is beneficial to know the mechanism and kinetics of the aromatization reaction to adapt to the necessity of industrialization.  相似文献   

4.
Abstract

Using a confined fluidized bed reactor and aromatization catalysts (LBO-A and LBO-16), three fluid catalytic cracking (FCC) narrow fraction gasoline (Lanlian gasoline, Shandong gasoline, and Fushun gasoline) at 420°C has been studied. The results reveal that at 420°C and a mass ratio of catalyst to oil of 5, the olefin content is remarkably reduced from about 20 to 30% (by mass) over 75% LBO-A and 25% LBO-16, and the octane number is kept at a high level after the aromatization reaction, at the same time the nine lumps model of aromatization reaction is put forward based on the corresponding mechanism. The method obtained can provide the technical instruction for the petroleum chemical plant.  相似文献   

5.
Using a confined fluidized bed reactor and aromatization catalysts (LBO-A and LBO-16), three fluid catalytic cracking (FCC) narrow fraction gasoline (Lanlian gasoline, Shandong gasoline, and Fushun gasoline) at 420°C has been studied. The results reveal that at 420°C and a mass ratio of catalyst to oil of 5, the olefin content is remarkably reduced from about 20 to 30% (by mass) over 75% LBO-A and 25% LBO-16, and the octane number is kept at a high level after the aromatization reaction, at the same time the nine lumps model of aromatization reaction is put forward based on the corresponding mechanism. The method obtained can provide the technical instruction for the petroleum chemical plant.  相似文献   

6.
Abstract

By using Lanlian FCC gasoline as a feedstock, the effects of temperature on the product distribution, light oil compound (gasoline and diesel), off-gas, and liquefied gas were researched in a confined fluidized bed reactor. The experimental results showed the off-gas, liquefied gas, and coke conversion were slowly increased with increasing temperature; the gasoline conversion had a maximum with increasing temperature; the diesel conversion showed no change; the olefins conversion was increased with increasing temperature; the aromatics yield was increased from 390°C to 430°C and from 430°C to 490°C, respectively; and the FCC gasoline Research Octane Number (RON) increased value was increased almost linearly with increasing the temperature. Aromatization index (AI) was put up in order to judge the aromatization degree of the FCC gasoline. The method obtained provided technical instruction for the petroleum chemical plant.  相似文献   

7.
By using Lanlian catalytic gasoline aromatization production as a feedstock, the effects of reaction conditions on the aromatization product yield, conversion, motor octane number (MON), research octane number (RON), and solvent product compound were researched in a confined fluidized bed reactor. The experimental results show that the changeable trend of secondary aromatization yield of Lanlian FCC gasoline are the same with FCC gasolines under the operation condition. Although the aromatics contents of FCC gasoline after the secondary aromatization are about 5%, MON value of production decreases and RON value of production remain no change and coke yield contents are very high. These show that the qualities of secondary aromatization of FCC gasoline are very poor.  相似文献   

8.
Abstract

Zinc and phosphorus incorporated HZSM-5 catalyst was prepared by adopting incipient wet co-impregnation (Zn-P/HZSM-5). Zn-P/HZSM-5 catalyst exhibited the lowest acidity but the highest aromatization activity with stable performance in the studied period of 16 hr. The process conditions on aromatization reaction and the coke deactivation mechanism of Zn-P/HZSM-5 catalyst were studied on a small-scale, fixed bed reactor using FCC naphtha (75–120°C). The weight contents of ZnO and P2O5 were 2% and 4%, respectively. Results showed that Zn-P/HZSM-5 catalyst under a temperature of 450°C, liquid hourly space velocity of 1.0 h?1, and pressure of 0.1 MPa, the conversions of olefins and alkanes are 96.77% and 88.94%, respectively, the contents of olefins, aromatics in liquid product are 6.79% and 74.57%, respectively. Carbon deposition was the major reason for catalyst deactivation due to the catalyst's good performance as a fresh catalyst after regeneration. All of the blending products fitted the standards of Chinese gasoline.  相似文献   

9.
Zinc and phosphorus incorporated HZSM-5 catalyst was prepared by adopting incipient wet co-impregnation (Zn-P/HZSM-5). Zn-P/HZSM-5 catalyst exhibited the lowest acidity but the highest aromatization activity with stable performance in the studied period of 16 hr. The process conditions on aromatization reaction and the coke deactivation mechanism of Zn-P/HZSM-5 catalyst were studied on a small-scale, fixed bed reactor using FCC naphtha (75-120°C). The weight contents of ZnO and P2O5 were 2% and 4%, respectively. Results showed that Zn-P/HZSM-5 catalyst under a temperature of 450°C, liquid hourly space velocity of 1.0 h-1, and pressure of 0.1 MPa, the conversions of olefins and alkanes are 96.77% and 88.94%, respectively, the contents of olefins, aromatics in liquid product are 6.79% and 74.57%, respectively. Carbon deposition was the major reason for catalyst deactivation due to the catalyst's good performance as a fresh catalyst after regeneration. All of the blending products fitted the standards of Chinese gasoline.  相似文献   

10.
FCC汽油在ZSM-5分子筛上的芳构化反应   总被引:1,自引:0,他引:1  
考察了全馏分催化裂化(FCC)汽油的芳构化改质反应,结果表明,在三种不同硅铝比的分子筛中,以硅铝比为50的分子筛为载体所制备的催化剂性能较好。对Ni、Mo、Zn、Co4种金属活性组分的选择考察,以Zn为活性组分的催化剂芳构化性能最好,以Ni为活性组分的催化剂液收最高。分析了FCC汽油中不同烃类的芳构化反应历程.得出金属组分应有适宜的含量。  相似文献   

11.
Abstract

By using Lanlian fluid catalytic cracked (FCC) gasoline as a feedstock, the effects of weight hour space velocity (WHSV) on the product distribution, light oil compound, off-gas, and liquefied petroleum gas were researched in a confined fluidized bed reactor. The equation of off-gas yield, liquefied petroleum gas yield, coke yield, and light oil yield with increasing WHSV were established in the experimental data. The experimental result showed that with increasing WHSV, coke, off-gas, and liquefied petroleum gas yield decreased gradually, and light oil yield increased piece by piece; the amount of olefin was enhanced step by step, that of aromatics dropped slowly, and that of saturated hydrocarbon did not change. However, olefin conversion and increasing ratio of aromatics presented a slowly decreasing trend and increasing ratio of saturated hydrocarbon showed no change; hydrogen yield was low and did not change; i-butane and propane decreased, but n-butane increased gradually; C0 3/C= 3 and nC0 4/nC= 4 values did not change, iC0 4/iC= 4 variety had no order; C0 3/C= 3, C0 4/C= 4, and (C0 3 + C0 4)/(C= 3 + C= 4) values showed a decreasing trend.  相似文献   

12.
Abstract

Catalytic properties of different content of ZnO and P2O5 supported on HZSM-5 zeolites were studied in the conversion of FCC gasoline (75°C–120°C) into aromatic hydrocarbons with a temperature of 430°C, a liquid hourly space velocity of 1.0 hr?1, and a pressure of 0.1 MPa. In the reaction, when the contents of ZnO and P2O5 are 2% and 4%, respectively, Zn-P/HZSM-5 showed the highest selectivity and activity to aromatic hydrocarbons and conversion of olefins. The content of aromatics in the liquid product and the yield of aromatics reached as high as 94.53%, 68.87%, and 51.74%, respectively.  相似文献   

13.
Catalytic properties of different content of ZnO and P2O5 supported on HZSM-5 zeolites were studied in the conversion of FCC gasoline (75°C-120°C) into aromatic hydrocarbons with a temperature of 430°C, a liquid hourly space velocity of 1.0 hr-1, and a pressure of 0.1 MPa. In the reaction, when the contents of ZnO and P2O5 are 2% and 4%, respectively, Zn-P/HZSM-5 showed the highest selectivity and activity to aromatic hydrocarbons and conversion of olefins. The content of aromatics in the liquid product and the yield of aromatics reached as high as 94.53%, 68.87%, and 51.74%, respectively.  相似文献   

14.
综述了FCC汽油加氢改质催化剂的研究开发进展,分析比较了各种催化剂的特点,讨论了其适用范围,指出了目前汽油改质催化剂研究开发存在的问题,认为具有高度加氢异构-适度芳构化双功能和长期稳定性的新型催化剂将是FCC汽油改质催化剂今后发展的趋势。  相似文献   

15.
以50~100℃的FCC汽油馏分为原料,在连续固定床反应器上考察了工艺条件对P-Zn/HZSM-5催化剂在芳构化反应中性能的影响。结果表明,在反应温度410℃、反应压力0.5MPa、液时空速1.0h^-1的操作条件下,液相产物中的烯烃、异构烷烃和芳烃的含量分别为8.56%,13.07%,73.39%。催化剂P-Zn/HZSM-5具有较好的芳构化降烯烃效果。  相似文献   

16.
FCC汽油降烯烃技术进展   总被引:11,自引:0,他引:11  
随着环保意识的加强 ,对汽油中的烯烃含量限制越来越严格 ,针对近期的发展动态 ,从催化裂化 (简称FCC)技术、醚化技术、芳构化技术和烷基化技术等方面介绍了FCC汽油降烯烃生产技术的进展。同时比较了各种方法的优缺点。  相似文献   

17.
The aromatization and olefin-reduction catalyst M has been applied in commercial unit for HDS desulfurization and olefin-reduction process with the heavy fraction of Fluid Catalytic Cracking gasoline. To solve the problems at higher reaction temperature, a series of modification procedures are taken on catalyst M. The characterization of four types of nano-scale HZMS-5 is conducted by XRD, Py-FT-IR, TEM, and BET analysis for the catalyst M modification. A modified catalyst M-II is successfully developed. Compared with catalyst M, the aromatics increases more than 1.3% and RON is 0.7 higher at the equivalent level of olefin reduction.  相似文献   

18.
针对催化裂化汽油脱硫技术要求,介绍了一种以共沉淀法制备的载体负载Co、Mo活性金属组分的催化汽油加氢脱硫催化剂,考察了载体Mg/Al原子比、焙烧温度、活性金属含量对催化剂活性及选择性的影响,并对本研究的催化剂进行了1000h的稳定性试验。实验结果表明,采用Mg/Al=X 0、5、焙烧温度(y 200)℃所制备的载体,在其活性金属MoO3含量8%、CoO含量2.0%时,催化剂具有适宜的酸性中心数和最佳的脱硫选择性;本研究催化剂在1000h的试验运转过程中,具有较高的脱硫率和较低的烯烃饱和率,其活性稳定性良好。  相似文献   

19.
Abstract

The aromatization reaction performance of P-Zn/HZSM-5 catalyst was investigated on a fixed bed reactor using five fluid catalytic cracked (FCC) gasoline fractions (<100°C, 50°C–100°C, <120°C, 75°C–120°C, and full fraction) as feedstock, and the effect of feedstock on aromatization is discussed. The results showed that the activity and stability of P-Zn/HZSM-5 catalyst for the aromatization of the 50°C–100°C fraction were high in definite reaction conditions. After 16 hr, the content of olefin and aromatics in liquid product were 5.23 and 79.9%, respectively. The liquid product of low olefin and high aromatics was obtained. The distribution of benzene, toluene, and xylene in liquid product of 50°C–100°C fraction was investigated during aromatization, and the result showed that the toluene content was maximum among the three aromatics contents, the benzene content was minimum at the beginning of the reaction, xylene content became maximum, and benzene was still minimum after reacting for 20 hr. The content of C9 + aromatics increased at the first stage of the reaction and then decreased with the increasing reaction time.  相似文献   

20.
Based on the experimental data relating to the reaction of FCC gasoline on acid catalyst the analysis of product distribution, and composition of gasoline and diesel fractions have been analyzed. The occurrence of disproportionation reaction of FCC gasoline on acid catalyst and the network of disproportionation reaction have been identified. Study has also shown that different reaction temperatures can result in different pathways of disproportionation reactions on acid catalyst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号