首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mechanical shear degradation of polydisperse polyisobutene and monodisperse polystrene in oils of different viscosities in the concentration range of 0.1% to 1% was studied using a high-shear concentric cylinder viscometer under laminar and uniform well-defined shear field conditions. Molecular weight distributions (MWDs) were measured by gel permeation chromatography (GPC). Degradation of polydisperse polyisobutene solutions narrows the distributions principally through the breaking down of large molecules. Degradation of monodisperse polystyrene broadens the distributions at lower shear stress. At higher shear stresses, the distributions do not broaden as much but are still broader than those of the original polymer. The final Mw/Mn ratios are considerably different from the value of 2 expected for random degradation. Hence, the degradation is likely a nonrandom process. It was found that the extent of degradation has a negative concentration dependence coefficient at relatively high molecular weight and a positive concentration dependence at lower molecular weight. Competing mechanisms of “stretching” and “entanglements” for degradation were postulated to explain the results. The degradation data indicate that the shear stress is the controlling parameter, not the shear rate. The shear degradation is independent of initial molecular weight and viscosity of the solvent.  相似文献   

2.
Melt viscosity of a polypropylene (PP) resin was measured in a capillary rheometer between 220 and 260°C. The melt viscosity showed a power law behavior with strong shear rate dependence. The effects of temperature and shear rate on the degradation were studied in the rheometer by heating at 260 and 280°C, and extruding at shear rates up to 10000 sec ?1 . Melt flow index (MFI) of samples after shearing and heating treatment was measured to characterize the molecular weight change. An increase in MFI was found for PP sheared at high temperature. Heating for longer time also increased MFI. Increase of shear rate had a small effect on increasing MFI at 260°C but produced a larger effect at 280°C. A constant increment in MFI was observed in PP subjected to high temperature processing and was attributed to degradation due to oxygenated products.  相似文献   

3.
The separate-layer injection in different interlayers and the injection of the same-molecular-weight polymer solution in a layer are necessary in the polymer flooding process because of heterogeneous multilayer sandstone reservoirs in EOR projects.To alleviate the matching problems between the layer permeability and the injected polymer molecular weight,a molecular weight adjusting device with porous medium was designed on the basis of mechanical degradation principle.In terms of four variables(polymer concentration,pore diameter,length of shear component and flow rate),the rheological behavior of hydrolyzed polyacrylamide(HPAM)solution flowing through the device was investigated in detail.The change of these variables is able to control the shear rate of HPAM solutions through ceramic foam,and achieve the desired degree of shear degradation and the final rheological parameters—viscosity loss,viscoelasticity and pressure drop.Therefore,a linear relationship between viscosity loss and shearing rate was established so as to obtain the targeted viscosity easily.Field tests in the Daqing Oil Field showed that the polymer molecular weight could drop 20%to 50%.In a word,the results could guide the industrial application of the novel device and the further study of polymer degradation flowing through the porous medium.  相似文献   

4.
Jianye Liu  Chixing Zhou 《Polymer》2008,49(1):268-277
The degradation of melt polyolefin elastomer (POE) at the presence of dicumyl peroxides (DCP) was estimated at elevated temperature in oscillatory shear flow. Large amplitude oscillatory shear (LAOS) experiments followed by Fourier transform rheology (FTR) were carried out to detect and evaluate the branching architecture of the products. The third complex harmonic (I3) and other two parameters, small strain elastic shear modulus (M) and large strain elastic shear modulus (L), which describe the nonlinearity and elasticity of a material obtained from FTR, are mainly used to characterize the topological structure of polymer chains. The results indicate the degradation appeared just after a large amount of the long chain branches (LCB) created rather than as soon as the reaction started when the strain was applied within the linear viscoelastic regime of the original POE at high frequencies. This is different from our previous result that the dominant reaction was coupling in linear shear flow. The threshold strain for degradation decreased with the oscillatory frequency, and the frequency owned a different acting mechanism from the strain amplitude to cause the degradation reaction. Moreover, there is a kind of selectivity of shear rate on the polymer chains for degradation. Low frequency results in short linear scission segments and a long branched chain suffers from degradation more than once. At high frequency, the possibility of degradation at the sites near the branching points of LCB increases.  相似文献   

5.
嘧霉胺在番茄中的残留研究及安全使用   总被引:1,自引:0,他引:1  
采用田间试验的方法,对嘧霉胺在番茄及土壤中的残留消解动态及最终残留量进行了研究,并对其在番茄上的安全使用进行了评价。消解动态试验结果表明:嘧霉胺在土壤中的半衰期为7.3~10.1 d,药后21 d消解91%以上,在番茄中的半衰期为2.1~2.5 d,药后5 d消解92%以上;最终残留量试验结果表明:70%嘧霉胺水分散粒剂在番茄上用于防治番茄疫病,以577.5、866.25 g/hm2有效成分剂量,连续喷药3~4次,喷药后3 d收获的番茄中嘧霉胺残留量为0.043~0.352 mg/kg,均低于美国规定的嘧霉胺在番茄中的最大残留限量0.5 mg/kg,因此,按照推荐使用剂量在番茄上使用,按采收间隔期3 d收获是安全的。  相似文献   

6.
An investigation was made of the magnitude and mechanism of shear degradation of a narrow distribution, high molecular weight (Mw = 670,000) polystyrene. An Instron rheometer was used to perform the extrusion at temperatures from 164° to 250°C. The change in molecular weight distribution was studied by gel permeation chromatography. The maximum shear stress employed was 5.83 kg/cm2. It was found that degradation could be induced at high stress at temperatures of 50°C lower than degradation of polystyrene would occur exclusively due to thermal forces. An activation energy for the degradation, calculated at constant shear rate, was +20.2 kcal/mole. The direction and magnitude of this value are consistent with degradation induced through a mechanical reduced activation for thermal degradation.  相似文献   

7.
Experiments were carried out at the lab-scale to study the effect of a shearing action in a compression dewatering process. The impact of different process parameters, such as shear rate, filter-cake thickness, and pressure, on the final dry solid fraction was analyzed. Also, materials with different degrees of compressibility have been used. For slightly and moderately compressible materials (talc and kaolin, respectively), significantly higher final dry solid fractions (up to 0.79 wt/wt with talc and 0.75 wt/wt with kaolin) were obtained in the presence of a torsion shear. This behavior may mainly be explained by a rearrangement of the solid particles within the cake induced by the radial forces. A low shear rate (around 0.7 s?1) was generally sufficient to cause a quite significant increase in the cake dryness (a 12.8% increase was observed with 11-mm-thick talc cakes). A further increase in the shear did not lead to noticeable changes in the final dry solid fraction in the cakes. Otherwise, reducing the filter-cake thickness was beneficial for the dewatering. For talc cakes, the dry solid fraction was increased by 21% for a 3 mm thickness against 7% for a 25 mm thickness. With a highly compressible material, such as activated sludge, the filter-cake dryness did not change with the application of a shearing action. This behavior may be mainly attributed to the fact that biological sludge dewatering is markedly influenced by a low permeability skin at the cake/medium interface, which is very thin and not perturbed by shear forces, due to the cake thickness. The low rigidity of the solid matter in this particular case may also limit the reorientation of the particles.  相似文献   

8.
A study is done on the influence of fumarate-based thickeners on the rheological behavior of low-molecular-weight poly(ethylene glycol) dimethacrylate monomers diluents, often used as major components in the formulation of anaerobic adhesives. These solutions generally showed pseudoplastic behavior. The Cross equation was selected to determine the viscosity vs. shear rate curves, at constant temperature. The final equation relates the viscosity as a function of shear rate and thickener concentration. In addition, the zero shear rate viscosity evolution as a function of the thickener weight fraction was studied, showing that two critical concentrations were present.  相似文献   

9.
Expansion-contraction behavior of capillary jets of dilute polymer solutions has been studied by using small diameter capillary tubes. The test liquids were water, glycerine solution and dilute solutions of polyethylene oxide and guar gum. It has been found that polyethylene oxide molecules degraded considerably at high shear rates; however the molecular degradation had little effect on the observed expansion-contraction behavior of capillary jets. On the other hand, the solvent viscosity had an appreciable effect on the issuing jets and on the final magnitude of the evaluated normal stresses  相似文献   

10.
A model is developed for the degradation of fibre-forming high polymers. Overall degradation is divided into three types of degradation: (i) thermal degradation based on the mean residence time; (ii) thermal degradation in the boundary layers caused by a prolonged residence time at the walls; (iii) degradation induced by mechanical effects (this type of degradation occurs, in particular, at low temperatures, i.e. at high dynamic viscosities, since it is proportional to the shear stress). In an example, the degradation in a pipe is reduced to a minimum. It is stated that an optimum value can always be fixed for the tube diameter and the operating temperature.  相似文献   

11.
The time‐dependent rheological behavior of a series of 3‐hydroxybuytrate‐based semicrystalline copolymers is employed to determine the expected rheological curves that would be generated in the absence of any polymer degradation. Both dynamic frequency sweep and shear rate sweep experiments were analyzed. A model for the degradation kinetics, coupled with standard rheological relationships, was employed to extrapolate the measured sweeps to predicted curves at time zero, prior to degradation. The model is broadly applicable over a wide range of frequencies or shear rates, and generates a single degradation rate constant k for each polymer studied. A similar, although ad hoc, procedure was applied to the dynamic storage and loss moduli. The model provides a method for determining the rheological behavior of degrading polymers over a time interval, typically found in processing applications. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102:1794–1802, 2006  相似文献   

12.
The extensional degradation of concentrated polymer solutions is studied. Extensional flows are prevalent in the polymer processing industry, but their effect on polymer degradation is often overlooked. Previous research into dilute solution extensional degradation proved that this type of flow is much more effective than shear flow in causing chain scission. This research extends these dilute solution studies into the concentrated regime, where intermolecular entanglements are expected to affect chain scission. A concentrated polystyrene solution is degraded in an opposed pistons device. This device cycles the solution across a sharp contraction, imposing a strong extensional flow. The flow field is modeled to determine the extension rate along the centerline, and the degradation is quantified by measuring the zero shear viscosity and the molecular weight distribution. The results show that degradation is more significant compared to dilute solutions. The zero shear viscosity drops 30% after a single pass across the orifice at high strain rates. As in a dilute solution, the extensional flow leads to preferential cleavage of the high molecular weight chains. All chains longer than a measured critical molecular weight are ruptured. Multiple passes across the orifice increase chain scission, although degradation is the most significant in the first pass through the high strain rate region.  相似文献   

13.
The dependence of shear degradation of polymer solutions on capillary length at constant shear stress is investigated with solutions of poly(isobutylene) (Mvis=6,1 · 106) in toluene. We examined concentrations of 0.1, 0.25, 1 and 4% and found the degradation to increase with capillary length. In 0,1% solution we found a decreased efficiency of degradation, due to a change in the structure of solution. Flow instabilities, which appear above a critical shear rate D in polymer solutions and pretend a loss in viscosity, are not caused by shear degradation. This result supports our interpretation of unstable flow of polymer solutions as slip flow (spurt).  相似文献   

14.
[方法]采用田间试验的方法,对己唑醇在苹果及土壤中的残留消解动态及最终残留量进行了研究.气相色谱电子捕获检测器进行定量分析.[结果]消解动态试验结果表明:己唑醇在土壤中的半衰期为7.1~14.4 d,在苹果中的半衰期为7.1~8.8 d;最终残留量试验结果表明:5%己唑醇悬浮剂按施药剂量为50、75 mg a.i./kg,连续喷药3~4次,施药间隔期7d,喷药后21 d土壤中已唑醇残留量<0.01~0.215 mg/kg,苹果中已唑醇残留量为0.011~0.055 mg/kg,均低于0.1 mg/kg(MRL).[结论]推荐5%已唑醇悬浮剂在苹果上使用安全间隔期为21 d.  相似文献   

15.
Jianye Liu 《Polymer》2006,47(20):7051-7059
The reaction of melt poly(ethylene-α-octene) (POE) initiated by dicumyl peroxide (DCP) was studied at elevated temperature in both oscillatory and transient shear flow fields. In oscillatory shear flow, the storage modulus evolution was monitored by parallel plate rheometer with certain oscillatory frequencies and different strains, which were chosen to represent different flow fields. Our results indicated that at low frequencies (0.1 and 0.4 Hz) the dominant reaction was coupling with small strain amplitudes within the linear viscoelastic regime. However, the degradation, which was caused by β-scission of tertiary carbon macromolecular radicals, also occurred when large strains were applied, which were out of the linear viscoelastic regime. The threshold strain of degradation was only 8% at 1.5 Hz, still within the linear viscoelastic regime. The mechanisms of how the frequency and strain affected the degradation were different. On the other hand, in transient shear flow the degradation could hardly take place when the shear rate was lower than the critical value of 0.0025 s−1. Moreover, the larger the shear rate, the more distinct was the degradation.  相似文献   

16.
The influence of MT black concentration on the shear modulus of low-density crosslinked polyethylene can be approximated by the Guth–Gold equation, at temperatures below the crystalline melting zone. Above the melting zone shear modulus does not depend practically on the carbon black level. At high temperatures both degradation and crosslinking reactions are taking place. The variation of the shear modulus with temperature due to these reactions is shown for various carbon black loadings. A preliminary chemical stress-relaxation study at 250°C is presented.  相似文献   

17.
The various types of drag-reducing systems and their hydrodynamic shear degradation are briefly reviewed and some new measurements reported. The new measurements include the determination of the efficiency of drag reduction by a variety of systems ranging from fully flexible polymers, more rigid polymers, and asbestos fibers. These results, together with those of previous workers using fractionated polymers, show a good correlation between critical concentration and particle length. The results suggest that at the highest wall shear stress, the parameter governing the efficiency is the contour length of the particle, irrespective of its structure, stiffness, or diameter. At lower wall shear stresses, the shorter flexible molecules are less efficient, but the short rigid ones and the long flexible ones maintain their efficiency. The shear degradation of the systems was measured by repeated passages of the solution through the measuring apparatus at both high and low wall shear stresses. Drag reduction measured at low wall shear stresses is an extremely sensitive indicator of shear degradation of flexible polymers.  相似文献   

18.
Mechanical degradation of a semi-dilute solution of non-hydrolyzed polyacrylamide was studied under laminar flow conditions through fine capillary systems. Using a multi-pass device and capillary tubes of the same diameter and of various lengths we have shown that mechanical degradation (i) occurs at a critical value of the wall shear rate, chosen as a reference deformation rate, which is slightly higher than that of the appearance of high pressure losses in the entrance region of the capillary tube; (ii) is independent of the capillary tube length; (iii) increases with the number of passes N up to a maximum value for a limiting number of passes Nlim which is a decreasing function of deformation rates but does not depend on capillary length. The amount of degradation is expressed in terms of loss of viscous dissipation in shear and transient elongational flow. This last point is determined by studying the total end pressure loss through the capillary tube as a function of the pass number. The high pressure loss is related to viscous dissipation on macromolecules stretched by rapid converging flow. A comparison between a fresh and a fully degraded solution indicates that the degradation affects shear viscosity much less than viscous dissipation in rapid converging flow which is related to the properties of extended macromolecules. Both experimental results and theoretical interpretation suggest that, in our capillary system, the mechanical degradation occurs in the entrance region of the capillary where macromolecules are stretched and consequently submitted to extensional forces which can overcome the C–C bonds strength.  相似文献   

19.
Gelled polymers are being used increasingly to modify the movement of injected fluids in secondary and enhaced oil recovery processes. A common gelation process involves the reduction of Cr(VI) to Cr(III) in the presence of polyacrylamide. The Cr(III) reacts or interacts with the polymer to form a gel network. Although correlations of gelation time with principal process variables have been obtained, viscometric data have not been reported during or after gelation. These data are needed for fluid flow calculations in surface equipment and estimation of flow behaviour in reservoir rocks.

A Weissenberg Rheogoniometer, with cone and plate geometry, was used to obtain viscometric data for the gelation of polyacrylamide and chromium (III). Solutions consisting of polyacrylamide polymer, sodium dichromate-dihydrate and sodium bisulfite were gelled under a steady shear field at constant temperature. The shear stress versus time profile for the galation process was interpreted to define a gelation time and to determine the apparent viscosity of the gelled fluid. The gelation time decreased as the applied shear rate increased up to about 14.25 sec?1 and was affected by shear rate history. Viscometric properties of the gelled solutions were determined. Apparent viscosity of the gelled solutions decreased as the shear rate under which they were formed increased.

Post gelation studies indicated that gels exhibited a residual stress at zero shear rate and behaved as Bingham plastics under steady shear. Gels formed at low shear rates were more viscous than gels formed at high shear rates. However, the structure of these gels was susceptible to shear degradation.  相似文献   

20.
Amorphous, partially transesterified poly(ethylene terephthalate)/poly(ethylene naphthalate) (PET/PEN) blends of different levels of transesterification and blend composition were investigated in terms of resultant phase behavior, thermal transitions, and melt rheological properties. Intrinsic viscosities of the lowest transesterified material were found to be significantly below those of a physical blend of an identical composition, but at higher levels of transesterification, there was little difference. This was similarly found in melt rheometry measurements, where the zero‐shear rate viscosity of the low and highly transesterified mixtures were similar. Both solution and melt rheometry indicated that the molecular weight decreased by thermal degradation from processing. This is believed to play an important role in determining the final molecular architecture and properties. For similar levels of ester interchange, there was a minimum observed in zero shear melt viscosity at around 40 wt % PEN. This is likely due to competition between the slightly transesterified copolymer chains having poorer packing in the melt and reduced entanglement. Differential scanning calorimetry and dynamic mechanical thermal analysis were used to investigate the phase behavior of partially and fully transesterified blends. Results for the glass transition of the highly transesterified blends were compared with the theoretical values calculated from the Fox equation and were found to be close, although slightly lower. A correlation between the melting temperature of the blend and the degree of transesterification was shown to exist. This correlation can be used to estimate the degree of ester exchange reaction from these melting transitions. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 83: 1556–1567, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号