首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mass transfer of CO2 into water and aqueous solutions of sodium dodecyl sulphate (SDS) is experimentally studied using a pressure, volume, temperature (PVT) cell at different initial pressures and a constant temperature (T = 25°C). It is observed that the transfer rate is initially much larger than expected from a diffusion process alone. The model equations describing the experiments are based on Fick's Law and Henry's Law. The experiments are interpreted in terms of two effective diffusion coefficients—one for the early-stages of the experiments and the other one for the later stages. The results show that at the early stages, the effective diffusion coefficients are one order of magnitude larger than the molecular diffusivity of CO2 in water. Nevertheless, in the later stages the extracted diffusion coefficients are close to literature values. It is asserted that at the early stages, density-driven natural convection enhances the mass transfer. A similar mass transfer enhancement was observed for the mass transfer between a gaseous CO2 rich phase with an oil (n-decane) phase. It is also found that at the experimental conditions studied addition of pure SDS does not have a significant effect on the mass transfer rate of CO2 in water.  相似文献   

2.
Abstract

Process optimization of CO2 removal from natural gas by a polyvinylidene fluoride hollow-fiber membrane contactor is a major goal of many computational fluid dynamics (CFD) simulations in this area. In this study, a 2D CFD model based on mass transfer equation inside the tube, the membrane, and the shell section of a HMFC at steady state and laminar conditions is developed and solved by COMSOL Multiphysics with finite element approach. Simulation results show an excellent agreement with experimental data. The model predicts that higher liquid velocity and membrane porosity results in higher CO2 removal, because of enhancement of effective diffusion coefficient. Also, taller fiber length results in higher contact area and higher mass transfer of CO2 from natural gas into distilled water. Although higher temperature will decrease the CO2 removal.  相似文献   

3.
Summary The hydrodynamics and mass transfer during desorption of CO2 by air from water on a tangential plate have been studied at gas flow rates ranging from 0.6 to 3.5 m/sec and irrigation densities ranging from 6 to 22 m3/m2·h; these experiments have shown that the mass transfer and plate efficiency coefficients of the plate considered are high up to 3.5 m/sec air flow rate (referred to the empty column).Translated from Khimiya i Tekhnologiya Topliv i Masel, No. 8, pp. 36–39, August, 1966.  相似文献   

4.
The injection of fuel-generated CO2 into oil reservoirs will lead to two benefits in both enhanced oil recovery (EOR) and the reduction in atmospheric emission of CO2. To get an insight into CO2 miscible flooding performance in oil reservoirs, a multi-compositional non-isothermal CO2 miscible flooding mathematical model is developed. The convection and diffusion of CO2-hydrocarbon mixtures in multiphase fluids in reservoirs, mass transfer between CO2 and crude, and formation damages caused by asphaltene precipitation are fully considered in the model. The governing equations are discretized in space using the integral finite difference method. The Newton-Raphson iterative technique was used to solve the nonlinear equation systems of mass and energy conservation. A numerical simulator, in which regular grids and irregular grids are optional, was developed for predicting CO2 miscible flooding processes. Two examples of one-dimensional (1D) regular and three-dimensional (3D) rectangle and polygonal grids are designed to demonstrate the functions of the simulator. Experimental data validate the developed simulator by comparison with 1D simulation results. The applications of the simulator indicate that it is feasible for predicting CO2 flooding in oil reservoirs for EOR.  相似文献   

5.
In this communication, the impacts of adding SDS (sodium dodecyl sulfate), TBAF (tetra-n-butylammonium fluoride) and the mixture of SDS + TBAF on the main kinetic parameters of CO2 hydrate formation (induction time, the quantity and rate of gas uptake, and storage capacity) were investigated. The tests were performed under stirring conditions at T = 5 ℃ and P = 3.8 MPa in a 169 cm3 batch reactor. The results show that adding SDS with a concentration of 400 ppm, TBAF with a concentration of 1–5 wt%, and the mixture of SDS + TBAF, would increase the storage capacity of CO2 hydrate and the quantity of gas uptake, and decrease the induction time of hydrate formation process. The addition of 5 wt% of TBAF and 400 ppm of SDS would increase the CO2 hydrate storage capacity by 86.1% and 81.6%, respectively, compared to pure water. Investigation of the impact of SDS, TBAF and their mixture on the rate of gas uptake indicates that the mixture of SDS + TBAF does not have a significant effect on the rate of gas uptake during hydrate formation process.  相似文献   

6.
Abstract

The effects of Na2CO3, nonionic surfactant octyldecyl glucoside (APG0810), and inorganic salt addition on the water separation ratio and apparent viscosity of oil-in-water (O/W) emulsions were investigated. The influences of this compound system on the stability of the emulsion and its synergistic mechanism were also analyzed. Results revealed that in the first compound situation, when APG was selected as the main surfactant and had a concentration of 0.1%, the mass concentration of Na2CO3 was 0.4%, the emulsion exhibited the strongest stability, and the water separation ratio at 30?°C for 120?min was 20.3%. In the second compound situation, when Na2CO3 was used as the main surfactant and had a concentration of 0.1%, the mass concentration of APG was 0.4%, the emulsion displayed the strongest stability, and the water separation ratio at 30?°C for 120?min was 57.8%. The stability of the O/W emulsion increased with increased NaCl addition, and a higher salt concentration corresponded to a lower water separation ratio. After CaCl2 addition, the apparent viscosity of the emulsion increased sharply, and the O/W emulsion underwent phase inversion to become an water-in-oil (W/O) emulsion. Within the set mass concentration range, increased salt concentration caused the apparent viscosity of the W/O emulsion measured at 50?°C and 30?rpm to decrease gradually but still exceeded 1500?mPa·s.  相似文献   

7.
Coupled THMC modeling of CO2 injection by finite element methods   总被引:1,自引:0,他引:1  
Geological CO2 sequestration has been proposed to mitigate greenhouse gas emissions. Massive CO2 injection into subsurface formation involves interactions among pressure and temperature change, chemical reactions, solute transport, and the mechanical response of the rock; this is a coupled thermal–hydraulic–mechanical–chemical (THMC) process. Numerical modeling of CO2 injection around the wellbore area can provide information such as changes in rock properties as well as stress and pressure changes, and this helps better predict injectivity evolution and leakage risk. In this paper, a fully coupled THMC model based on finite element methods is presented to analyze the transient stress, pressure, temperature and chemical solute concentration changes simultaneously around an injection well. To overcome these numerical oscillations in solving the transient advection–diffusion equations involved in the heat transfer and solute transport processes, we employ a stabilized finite element approach, the subgrid scale/gradient subgrid scale method (SGS/GSGS). A hypothetical numerical experiment on CO2 saturated water injection into a carbonate aquifer is conducted and preliminary results show that the fully coupled model can successfully analyze stress and pressure changes in the rock around a wellbore subjected to thermal and chemical effects.  相似文献   

8.
用智能质量分析仪(Intelligent Gravimetric Analyser)测得了不同温度下异戊二烯(Isoprene)、戊烯-1(Pentene-1)及噻吩(Thiophene)在Co-Mo/γ-Al2O3选择性加氢脱硫催化剂上的吸附-脱附等温线及程序升温脱附曲线(TPD),并研究了三者在该催化剂上的扩散性能。结果表明,噻吩、异戊二烯、戊烯-1在Co-Mo/γ-Al2O3选择性加氢脱硫催化剂上的饱和吸附量依次降低;噻吩与该催化剂存在2种吸附作用,即物理吸附和化学吸附,化学吸附形成Co-Mo-S相,可有效地提高加氢脱硫催化剂的脱硫效果,而戊烯-1和异戊二烯在该催化剂上只存在1种弱吸附作用;3种吸附质中,戊烯-1相对扩散系数最大,噻吩和异戊二烯的相对扩散系数较小且相近。  相似文献   

9.
Abstract

Reducing the mobility of CO2 by means of generating in situ foam is an effective method for improving the oil recovery in CO2 flooding processes. Implementation of the CO2-foam technique typically involves the co-injection of CO2 and surfactant solution into the porous medium. The surfactant molecules form bubble films that trap the flowing CO2 molecules. The effectiveness of the CO2-foam process is measured in terms of foam mobility. The mobility of CO2-foam is affected by different operation parameters, such as pressure, temperature, foam quality, and brine concentration. However, surfactant type governs the overall efficiency of the CO2-foam process. This paper presents the results of a series of experiments conducted to study the effect of various parameters on the CO2-foam process. Bottle tests were conducted for four commercially available surfactants and among them, Chaser CD-1045 was found to be the most effective surfactant for CO2-foam flow under reservoir conditions. It was observed that an increase in pressure from 1, 200 psi to 1, 500 psi leads to increase of the mobility of CO2-foam, and an increase in temperature from 72 to 122°F reduces the mobility. Also, as the foam quality increases from 20 to 80%, the mobility decreases. It was observed that there was no significant effect on the mobility with an increase in brine concentration from 1 to 3 wt%.  相似文献   

10.
The adverse impacts of CO2 emission on the global warming highlight the importance of carbon capture and storage technology and geological storage of CO2 under solubility trapping mechanisms. Enhancing the solubility of CO2 in formation water has always been the focus of research in the area of CO2 sequestration. Ultrasound techniques are one of the environmentally friendly methods that use high-intensity acoustic waves to improve gas solubility in liquids. Ultrasonic waves can alter the properties of different phases that lead to chemical reactions and provide a means to increase the solubility of CO2 in connate water. In this study, we investigated the effects of ultrasound on the solubility of CO2 in connate water under different conditions of pressure, temperature, and salinity. The results showed that the solubility of CO2 was improved with increasing pressure under ultrasonic effects. However, the solubility of CO2 was inversely proportional to the increase in brine salinity and temperature. Therefore, it was concluded that the solubility of CO2 might be enhanced in the presence of ultrasound.  相似文献   

11.
CO2 flooding is an effective way in the tertiary oil recovery. While asphaltene often precipitates from the crude oil during the CO2 flooding, and the mechanisms of blockage resulting from asphaltene precipitation is still unclear in different CO2 flooding schemes. In this work, pure-CO2 flooding, water-alternating-CO2 flooding (WAG), and CO2-foam flooding were applied to conduct the core-flooding experiments. Then, as for each flooding scheme, we quantitatively investigated the blockage degree in different pores due to asphaltene precipitation with nuclear magnetic resonance (NMR) technique. Tests results show that CO2-foam flooding has a relatively higher blockage degree both in the smaller pores and the larger pores than WAG and pure-CO2 flooding. Although pure-CO2 flooding has the least asphaltene precipitation and blockage degree among three flooding schemes, its oil recovery degree is far less than the other two flooding schemes. Compared with pure-CO2 flooding and CO2-foam flooding, WAG flooding has the highest oil recovery and an acceptable asphaltene precipitation.  相似文献   

12.
Abstract

Among all enhanced oil recovery (EOR) scenarios, gas injection seems to be promising for implementation in naturally fractured reservoirs. The use of CO2 has received considerable interest as a method of EOR but a major drawback is its availability and increasing cost. Therefore, an alternative gas like CH4 or N2 must be considered to meet the economic considerations. To investigate the efficiency of oil recovery by CO2, N2, and CH4 injection in fractured carbonate rock, a series of experiments was designed. Both miscible and immiscible schemes for gas injection were carried out on a low-permeable outcrop carbonate rock that was surrounded by fracture, established with a novel experimental method. The experiments aimed to investigate the potential of oil recovery by secondary and tertiary gas injection under high-temperature conditions. The matrix block was saturated using a recombined mixture of Iranian live oil, and by pumping water into the annular space, the space between rubber sleeve and outer jacket, high overburden pressure was exerted to obtain the desired homogeneous saturation. Using a back-pressure regulator, the pressure was kept above the bubble point pressure. The inlet was attached to a constant pressure pump injecting gas or water above the bubble point pressure, and the overburden pressure was removed gradually and the inlet fluid inflated the rubber sleeve. The amount of produced water from the annular space was recorded to estimate the distance between the rubber sleeve and sand face. This distance creates the fracture surrounding the core. Gas was injected into the fracture at pressures above the bubble point of the oil. Oil recovery as a function of time was monitored during the experiments. Results from both secondary and tertiary gas injection experiments indicate that CO2 injection at elevated pressure and temperature is more efficient than N2 and CH4 injection.  相似文献   

13.
目的 模拟超重力CO2的吸收过程,从而为实验工艺参数的优化提供指导。方法 建立了超重力NaOH碱液吸收CO2的Aspen计算模型,考查了多个影响因素对CO2脱除率的影响。结果 通过对比可知,将超重力反应器等价转化为常规填料塔后,NaOH质量分数、碱液进料量和压力对CO2脱除率的影响与超重力实验室的变化规律一致,但模拟值仅为实验值的1/2左右。对传质参数进行进一步修正,修正后的模拟计算结果与实验值接近,平均偏差仅为0.77%。结论 建立的超重力CO2吸收模型准确可靠,可为后续实验提供一定的方向性指导。  相似文献   

14.
Long-term testing of a membrane contactor based on a blend of the nonporous polymers polytrimethylsilylpropyne (PTMSP) and polyvinyltrimethylsilane (PVTMS) has been carried out. The flat-sheet membrane contactor has been tested for CO2 desorption from an aqueous methyldiethanolamine solution at 100°C. It has been found that the mass transfer parameters (CO2 flux and stripping efficiency) of the 95%PTMSP/5%PVTMS membrane stabilize after the 7th day of testing. The CO2 mass transfer coefficient in the membrane contactor has been evaluated, and optimal desorption parameters have been determined.  相似文献   

15.
目的CCUS井的水泥环长期处于CO2腐蚀环境中,水泥环将被腐蚀导致CO2泄漏,需对腐蚀速率进行预测。然而目前的腐蚀预测模型以井眼和半经验公式为主,导致水泥环腐蚀预测不准确,制约了CCUS井水泥环腐蚀防治技术的研究。 方法针对这一问题,基于CO2和钙质量守恒定律,建立了CO2腐蚀深度预测模型,并利用该模型分析了腐蚀时间、温度、CO2分压、水灰比和耐腐蚀材料加量对腐蚀深度的影响规律,并建立了评价模型,对影响因素的影响程度进行排序。 结果CO2腐蚀深度随腐蚀时间、温度、Cl—浓度、CO2分压、水灰比及含水饱和度增加而增大,随着水泥环密度、耐腐蚀材料加量增加而减少;水泥环中CO2含量随腐蚀深度呈非线性降低。影响因素由强到弱为:含水饱和度>耐腐蚀材料>水灰比>CO2分压>腐蚀时间>水泥环密度>Cl—浓度>温度。 结论研究成果对于CCUS井控制CO2对水泥环的碳化腐蚀保障井筒完整性具有指导意义。   相似文献   

16.
CO_2干法加砂压裂是低压、低渗透、强水敏等非常规储层高效开发的有效措施之一。系统分析了目前国内外液态CO_2干法加砂压裂技术中增稠剂现状,对现有增稠剂分子结构进行分析归类,指出了增稠剂存在的主要技术问题和开发的难点。通过对目前国内液态CO_2干法压裂技术现状和现场试验情况梳理发现:国内液态CO_2增稠剂技术滞后于现场应用,压裂液携砂效率低,影响了压裂施工效果;分析国内外液态CO_2增稠剂研究存在的问题,借鉴现有研究成果,依据CO_2分子结构特征和理化特性,构建能使液态CO_2高效增黏的新型增稠剂分子结构,合成高质量的液态CO_2增稠剂,是实现液态CO_2干法加砂压裂的技术关键。在现有技术条件下,建议将液态CO_2干法压裂技术与常规无水压裂技术结合,既发挥了液态CO_2干法压裂技术优势,又实现了高砂比对压裂施工技术要求,满足非常规储层压裂开发需要。  相似文献   

17.
The ability of a novel nonionic CO2-soluble surfactant to propagate foam in porous media was compared with that of a conventional anionic surfactant (aqueous soluble only) through core floods with Berea sandstone cores. Both simultaneous and alternating injections have been tested. The novel foam outperforms the conventional one with respect to faster foam propagation and higher desaturation rate. Furthermore, the novel injection strategy, CO2 continuous injection with dissolved CO2-soluble surfactant, has been tested in the laboratory. Strong foam presented without delay. It is the first time the measured surfactant properties have been used to model foam transport on a field scale to extend our findings with the presence of gravity segregation. Different injection strategies have been tested under both constant rate and pressure constraints. It was showed that novel foam outperforms the conventional one in every scenario with much higher sweep efficiency and injectivity as well as more even pressure redistribution. Also, for this novel foam, it is not necessary that constant pressure injection is better, which has been concluded in previous literature for conventional foam. Furthermore, the novel injection strategy, CO2 continuous injection with dissolved CO2-soluble surfactant, gave the best performance, which could lower the injection and water treatment cost.  相似文献   

18.
To further improve the oil displacement effect by CO2 flooding, the trends and conditions of asphaltene deposition under different injection pressures and injection volumes of CO2 were studied by SDS solid phase deposition testing system, high temperature and high pressure microscope, and P-X phase diagram. When the mole fraction of CO2 in crude oil increases to a certain value, asphaltene deposition appears. The lower the pressure, the lower the mole fraction of CO2 in crude oil causing the asphaltene deposition there is. After the onset of asphaltene deposition, the degree of deposition increases with an increase in pressure. The amount of the deposited asphaltene under miscible displacement is the highest, under near-miscible displacement is the second highest, and under immiscible displacement is the lowest. When the dissolution of CO2 in crude oil reaches the saturation point, the asphaltene deposition becomes slow. Besides, it is feasible to prevent or reduce the asphaltene deposition by adjusting the thermodynamic parameters according to the phase behaviors of the CO2-crude oil system. The experimental results can provide theoretical basis for optimization design of the parameters of CO2 flooding.  相似文献   

19.
Removal of carbon dioxide from methane is a critical issue in the gas sweetening and treatment units. The aim of this study is to investigate the capability of PES/Pebax composite membrane in order to CO2 removal from the CH4. In this regard, permeability values of both carbon dioxide and methane have been measured. The ranges of temperature and pressure used for pure gases experiments were 20–50°C and 2.5–10 bar, respectively. Moreover, influence of CO2 concentration on the CH4 permeability and its selectivity was studied. Results indicated that the pressure and temperature have significant influence on permeability and selectivity. In addition, for the gas mixtures, experiments were carried out at 5 bar and 35°C. Results also indicated that at higher CO2 concentrations the CO2 permeability increased significantly.  相似文献   

20.
Gas transport characteristics (permeability and diffusion and solubility coefficients for CO2, O2, N2, H2) of new crosslinked membrane materials synthesized by copolymerization of poly(ethylene glycol) dimethacrylate and poly(ethylene glycol) methyl ether methacrylate in the presence of various ionic liquids have been studied. Comparison of the characteristics of specimens with and without ionic liquids has revealed that the presence of ionic liquids enhances the permeability of the membranes, especially to CO2. It has been shown that the enhancement of the CO2 permeability of films incorporating ionic liquid is due to an increase in CO2 solubility and the increase in selectivity for pairs of gases containing CO2 is determined by thermodynamic selectivity of separation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号