首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到4条相似文献,搜索用时 0 毫秒
1.
Milling cutters were evaluated by tool wear, cutting force and vibration. Surface integrity of grinding and milling were investigated by comparing residual stress distributions, metallurgical structure, hardened layer depth and surface roughness. And influence of cutting tool wear on surface integrity was investigated. Experimentations revealed that the preferable surface integrity would be obtained if the proper milling cutter as well as a small wear criterion were adopted to avoid the advent of tempered martensite. The research results pointed out the feasibility of taking milling as the finish machining process instead of grinding in machining hardened steel with high efficiency.  相似文献   

2.
This paper presents a review of the state-of-art research on surface integrity characterization, especially the characteristics of residual stresses produced in machining of hardened steels, titanium and nickel-based superalloys using the geometrically defined tools. The interrelationships among residual stresses, microstructures, and tool-wear have been discussed. Current research on residual stress modeling and simulation using finite element method has been critically assessed. Also, the rationale for developing multi-scale simulation models for predicting residual stresses in machining has been presented. At the end, possible future work has been proposed.  相似文献   

3.
ABSTRACT

Machining cracks in ground sintered reaction-bonded silicon nitride (SRBSN) rods and bars were analyzed by fractographic techniques. Grinding flaw sizes were as small as 12 µm and as large as 80 µm and correlated strongly with grinding direction and wheel grit size. Some grinding treatments had no deleterious effect on strength since the machining cracks were very small and fracture occurred from the material's inherent flaws. The telltale signs of machining damage may be detected with conventional low power optical microscopy using simple fractographic techniques. The telltale signs are summarized in a new series of schematic drawings which will aid pattern recognition for engineers and fractographers.  相似文献   

4.
Machining cracks in ground sintered reaction-bonded silicon nitride (SRBSN) rods and bars were analyzed by fractographic techniques. Grinding flaw sizes were as small as 12 µm and as large as 80 µm and correlated strongly with grinding direction and wheel grit size. Some grinding treatments had no deleterious effect on strength since the machining cracks were very small and fracture occurred from the material's inherent flaws. The telltale signs of machining damage may be detected with conventional low power optical microscopy using simple fractographic techniques. The telltale signs are summarized in a new series of schematic drawings which will aid pattern recognition for engineers and fractographers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号