首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A model Pd/Fe2O3 catalyst prepared by the vacuum technique has been studied in the carbon monoxide oxidation in the temperature range of 300–550 K at reagent pressures P(CO)=16 Torr, P(O2)= 4 Torr. It has been shown that the activity of the fresh catalysts is determined by palladium. According to the XPS data, the reduction with carbon monoxide results in the formation of Fe2+ (formally Fe3O4) and appearance of the catalytic activity in this reaction at low temperatures (350 K). High low-temperature activity of the catalyst is supposed to be connected with the reaction between oxygen adsorbed on the reduced sites of the support (Fe2+) and CO adsorbed on palladium (COads) at the metal–oxide interface.  相似文献   

2.
Three types of supported cobalt catalysts (5% as metal Co loading on SiO2, Al2O3 and TiO2) were prepared by incipient wetness impregnation with aqueous Co(NO3)2·6H2O solution. Then, all catalysts were calcined in air at 400 °C (assigned as 5Co/Si C400, 5Co/Al C400 and 5Co/Ti C400). Their catalytic activities towards the CO oxidation were studied in a continuous flow micro-reactor. Adsorption of carbon monoxide (CO) and the co-adsorption of CO/O2 over cobalt oxide were further tested under in situ FT-IR. The results showed that both 5Co/Si C400 and 5Co/Al C400 had higher activity than 5Co/Ti C400. The T50 (50% conversion) for both 5Co/Si C400 and 5Co/Al C400 was reached at temperatures as low as ambient temperature. According to the in situ FT-IR analysis, the variation in oxidation of CO was interpreted with different mechanisms, i.e., the reaction between adsorbed CO and lattice oxygen of cobalt oxide, and part of CO2 formation via carbonates on 5Co/Si C400; both types of carbonates are formed on 5Co/Al C400 to promote the CO oxidation; while both strong adsorption of CO on TiO2 and CO2 on cobalt oxide for 5Co/Ti C400 leads to affect the activity.  相似文献   

3.
Cerium oxide is a major additive in three-way catalysts used in emission control of automobile exhaust. Pt/CeO2 was studied in order to better understand the role of ceria in promoting CO oxidation reaction. The kinetics of carbon monoxide oxidation on Pt/cerium oxide catalyst, was studied over the temperature range 100–170°C. Steady state kinetic measurements of CO oxidation were obtained in a computer controlled micro-CSTR reactor. Activation energies were reported to vary between 39·5 and 51·2 kJ mol−1. At low concentrations of either reactant (CO, O2) and total conversion, the catalyst exhibited multiple steady states, similar to the multiplicity behavior of Pt/Al2O3. The total conversion was reached at 120°C. In comparison, the total conversion at low reactant concentrations was reached at a temperature of 148°C for the alumina-supported catalyst. Langmuir–Hinshelwood mechanisms gave a good fit to the data. However, no single rate expression could effectively describe the CO oxidation data over the whole concentration in the product of the CSTR reactor. The facts gathered indicate that oxygen adsorbed on interfacial Pt/Ce sites and ceria lattice oxygen provides oxygen for CO oxidation. Cerium oxide has been found to lower CO oxidation activation energy, enhance reaction activity and tends to suppress the usual CO inhibition effect.  相似文献   

4.
Oxidation of bulk samples of 〈Al〉 by water and H2O/CO2 mixture at sub- and supercritical conditions for uniform temperature increase and at the injection of H2O (665 K, 23.1 MPa) and H2O/CO2 (723 K, 38.0 MPa) fluids into the reactor has been studied. Transition of 〈Al〉 into AlOOH and Al2O3 nanoparticles has been found out. Aluminum samples oxidized by H2O and H2O/CO2 fluids at the injection mostly consist of large particles (300-500 nm) of α-Al2O3. Those oxidized for uniform temperature increase contain smaller particles (20-70 nm) of γ-Al2O3 as well. Mechanism of this phenomenon is explained by orientation of oxygen in H2O polar molecules to the metal in the electric field of contact voltage at Al/AlOOH and Al/Al2O3 boundary. Addition of CO2 to water resulted in CO, CH4, CH3OH and condensed carbon, increase in size of Al2O3 nanoparticles and significant decrease in time delay. In pure CO2 〈Al〉 oxidation resulted in oxide film. Using temperature and time dependences of gaseous reactant pressure and Redlich-Kwong state equation, kinetics of H2 formation has been described and oxidation regularities determined. At aluminum oxidation by H2O and H2O/CO2 fluids, self-heating of the samples followed by oxidation rate increase has been registered. The samples of oxidized aluminum have been studied with a transmission electronic microscope, a thermal analyzer and a device for specific surface measurement. The effect of oxidation conditions on the characteristics of synthesized nanoparticles has been found out.  相似文献   

5.
The CO/O2 and CO2 pulse experiments were carried out to acquire useful information about oxygen release/storage and CO2 adsorption on ceria and Pt–Rh/ceria. In the CO pulse experiments at 500 °C, ca. 60% of CO uptake was released as CO2 while the rest of CO uptake was retained as carbon residuals on the surfaces of both samples. The carbon residuals could be removed when O2 was provided. In the CO2 pulse experiments, the adsorption of CO2 was found to relate to the temperatures and the oxidation states of surface cerium. The reduced Ce3+ sites (O vacancies) were responsible for the adsorption of CO2 at the temperature of 500 °C. In addition, the molar ratios of CO2 adsorption to O vacancies (38–39%) were in agreement with the ratios of carbon residuals to CO uptake ( ca. 40%) measured in the CO pulse experiments. Quantitative analyses of oxygen release/storage and CO2 adsorption implied that in the process of oxygen release, carbon residuals were possibly in the form of a carbonate-like species due to the adsorption of CO2 onto the reduced Ce3+ sites.  相似文献   

6.
A study of the kinetics of the reaction of adsorbed carbon monoxide with oxygen on polycrystalline palladium is reported in which a pressure jump method was used to induce transients in the carbon dioxide production. Through an analysis of these transients under a variety of conditions of temperature and oxygen pressure, some details of the kinetics have been delineated. At relatively low temperatures and under a significant O2 pressure, CO(a) is desorbed more readily as CO2, via the reaction CO(a) + O(a) → CO2, than as CO. The reaction is first order in oxygen and the rate is limited by the rate of adsorption of oxygen onto sites which are in close proximity to CO(a). Oxygen adsorption at sites which are further than a critical distance from CO(a) are unreactive. The critical distance increases with temperature reflecting increased mobility. Under conditions where both CO(a) and O(a) are significant and both CO(g) and O2(g) are small the rate is limited by the mobility of CO(a) and/or O(a). The amount of CO(a) during the course of the steady-state oxidation reaction can be determined by analyzing the transient CO2 production which occurs following a pressure jump in carbon monoxide.  相似文献   

7.
Poor reproducibility of the transparency of corundum ceramics produced by the alkoxy technology is related to the possibility of penetration of oxidized carbon from alkoxy groups into a solid solutions with Al2O3. Carbon neutralizes the effect of magnesium oxide additive and intensifies diffusion mass transfer, capture of pores by growing crystals, and polymorphous transformation into corundum. Introduction of carbon as soot or naphthalene into previously decarbonized Al2O3 powder in the course of dry milling, its subsequent heat treatment in air or in moist CO2 medium, and sintering of the samples in vacuum supported this assumption.  相似文献   

8.
Gas-phase oxidation of CO in the presence of rhenium cations with carbonyl and oxygen ligands has been studied by Fourier transform ion cyclotron resonance (FT-ICR) spectrometry. Rhenium cations have been generated by the electron impact of Re2(CO)10 vapour. Contrary to the unreactive rhenium ions, rhenium monocarbonyi ions have been found to react with O2 molecules yielding rhenium monoxide ions and CO2 molecules. ReO+ ions are subsequently oxidized with O2 to di- and trioxide ions. The bond energies in rhenium oxide ions were estimated as D°(Re+–O)=104±14, D°(ReO+–O)<118, D°ReO 2 + –O)=122±4 kcal/mol. Simultaneous addition of CO and O2 molecules to the reaction volume leads to the gas-phase catalytic oxidation of CO with pairs of rhenium oxide ions ReO 3 + /ReO 2 + serving as the oxidized and reduced forms of the catalyst. The mechanisms of the above reactions are discussed in connection with that for oxidation of CO over solid oxide catalysts.  相似文献   

9.
Ni/Al2O3 with the doping of CeO2 was found to have useful activity to reform ethane and propane with steam under Solid Oxide Fuel Cells (SOFCs) conditions, 700-900 °C. CeO2-doped Ni/Al2O3 with 14% ceria doping content showed the best reforming activity among those with the ceria content between 0 and 20%. The amount of carbon formation decreased with increasing Ce content. However, Ni was easily oxidized when more than 16% of ceria was doped. Compared to conventional Ni/Al2O3, 14%CeO2-doped Ni/Al2O3 provides significantly higher reforming reactivity and resistance toward carbon deposition. These enhancements are mainly due to the influence of the redox properties of doped ceria. Regarding the temperature programmed reduction experiments (TPR-1), the redox properties and the oxygen storage capacity (OSC) for the catalysts increased with increasing Ce doping content. In addition, it was also proven in the present work that the redox of these catalysts are reversible, according to the temperature programmed oxidation (TPO) and the second time temperature programmed reduction (TPR-2) results.During the reforming process, in addition to the reactions on Ni surface, the gas-solid reactions between the gaseous components presented in the system (C2H6, C3H8, C2H4, CH4, CO2, CO, H2O, and H2) and the lattice oxygen (Ox) on ceria surface also take place. The reactions of adsorbed surface hydrocarbons with the lattice oxygen (Ox) on ceria surface (CnHm+OxnCO+m/2(H2)+Oxn) can prevent the formation of carbon species on Ni surface from hydrocarbons decomposition reaction (CnHmnC+m/2H2). Moreover, the formation of carbon via Boudard reaction (2CO⇔CO2+C) is also reduced by the gas-solid reaction of carbon monoxide (produced from steam reforming) with the lattice oxygen (CO+Ox⇔CO2+Ox−1).  相似文献   

10.
The effect of added SnO2 and ZrO2 to CuO/Al2O3 catalysts was investigated with reference to the oxygen spillover phenomena in the selective oxidation of carbon monoxide. The TPR and TPO analyses indicated that SnO2 and ZrO2 addition caused oxygen migration and induced the formation of high concentrations of active oxygen species on the SnO2 and ZrO2 surface. The catalytic activities of SnO2 and ZrO2 supported CuO/Al2O3 catalysts were superior to that for CuO/Al2O3 catalysts in the selective oxidation of carbon monoxide. Oxygen, when absorbed to the SnO2 and ZrO2 surface can spill over to the CuO phase and easily react with carbon monoxide. Consequently, the addition of SnO2 and ZrO2 led to significantly improved activities. This can be attributed to the enhanced migration of oxygen to the catalyst surface.  相似文献   

11.
Studies of carbon monoxide oxidation on an Ag-25 at% Pd alloy electrode in a cell with a solid oxygen-conducting electrolyte - CO+O2, Ag-Pd | 0.9 ZrO2+0.1Y2O3 | Pt+PrO2-x, air - were carried out. XRD, SEM and XPS techniques were used for characterisation of the Ag-Pd alloy electrode. The non-Faradaic effect of electrochemical oxygen pumping on the rate of carbon monoxide oxidation was demonstrated. The induced change in the reaction rate at cathodic polarization of the Ag-Pd alloy electrode was an order of magnitude higher than the rate of oxygen pumping from the reaction zone through the electrolyte. The observed phenomenon was qualitatively explained on the base of a chain reaction mechanism involving electrochemically generated oxygen species.  相似文献   

12.
《Fuel》1986,65(10):1383-1387
Temperature-programmed gasification with O2, CO2 and H2 is used for the characterization of carbon deposits on Ni/Al2O3 and Co/Al2O3, based on the difference in reactivity of the several types of deposits. These deposits were formed by CO disproportionation at 675 K, 725 K and 775 K. The gasification patterns show the existence of mainly two types of carbon deposits. One form is attributed to filamentous carbon, the second form is believed to have a more graphitic structure. The TPG patterns are strongly influenced by the oxidation state and the catalytic activity of the metal(oxide) on the gasification of carbon.  相似文献   

13.
C. G. Lee  J. Pak 《Fuel Cells》2014,14(4):590-594
Carbon oxidation behaviors were illuminated in terms of gas composition in a coin‐type direct carbon fuel cell. The main gas species in the anode chamber at 850 °C was mostly carbon monoxide, which was generated from the chemical reaction of carbon and molten carbonates. The concentration of CO was reduced as time passed because the reactivity of carbonates was weakened. The open circuit voltage was directly dependent on the CO concentration. The gases in the anode chamber had a vertical concentration distribution; the highest CO and the lowest CO2 concentrations were observed near the electrode. However, the voltage in the polarization state was less dependent on the gas composition. A polarization state of 150 mA cm–2 allowed the oxidation of CO, resulting in an increased CO2 concentration near the electrode. The enlarged CO2 partial pressure facilitated CO generation through the recombination of carbonate ions (CO32–). Decreasing the temperature from 850 to 750 °C reduced the level of carbon monoxide at the anode. The presence of CO as a main component in the anode concludes that the oxidation of solid carbon takes place through the gasification of carbon to CO, then electrochemically to CO2.  相似文献   

14.
FT-IR study of Au/Fe2O3 catalysts for CO oxidation at low temperature   总被引:1,自引:0,他引:1  
Coprecipitated Au/Fe2O3 catalysts used for low-temperature catalytic oxidation of carbon monoxide have been studied by FT-IR spectroscopy of adsorbed CO. The FT-IR results have shown that after preparation and exposure to a CO/O2 mixture gold is present on the surface mainly as Au1+ and Au0 species. It has been found that in the CO oxidation Au1+ is more active and less stable than Au0. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

15.
This paper reports the performance of porous Gd-doped ceria (GDC) electrochemical cells with Co metal in both electrodes (cell No. 1) and with Ni metal in the cathode and Co metal in the anode (cell No. 2) for CO2 decomposition, CH4 decomposition, and the dry reforming reaction of a biogas with CO2 gas (CH4 + CO2 → 2H2 + 2CO) or with O2 gas in air (3CH4 +?1.875CO2 +?1.314O2 → 6H2 +?4.875CO +?0.7515O2). GDC cell No. 1 produced H2 gas at formation rates of 0.055 and 0.33?mL-H2/(min?m2-electrode) per 1?mL-supplied gas/(min?m2-electrode) at 600?°C and 800?°C, respectively, by the reforming of the biogas with CO2 gas. Similarly, cell No. 2 produced H2 gas at formation rates of 0.40?mL-H2/(min?m2) per 1?mL-supplied gas/(min?m2) at 800?°C from a mixture of biogas and CO2 gas. The dry reforming of a real biogas with CO2 or O2 gas at 800?°C proceeded thermodynamically over the Co or Ni metal catalyst in the cathode of the porous GDC cell. Faraday's law controlled the dry reforming rate of the biogas at 600?°C in cell No. 2. This paper also clarifies the influence of carbon deposition, which originates from CH4 pyrolysis (CH4 → C + 2H2) and disproportionation of CO gas (2CO → C + CO2), on the cell performance during dry reforming. The dry reforming of a biogas with O2 molecules from air exhibits high durability because of the oxidation of the deposited carbon by supplied air.  相似文献   

16.
The selective production of hydrogen via steam reforming of methanol (SRM) was performed using prepared catalysts at atmospheric pressure over a temperature range 200–260C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming reaction producing carbon monoxide which is highly poisonous to the platinum anode of PEM fuel cell, therefore the detailed study of effect of catalyst preparation method and of different promoters on SRM has been carried out for the minimization of carbon monoxide formation and maximization of hydrogen production. Wet impregnation and co-precipitation methods have been comparatively examined for the preparation of precursors to Cu(Zn)(Al2O3) and Cu(Zn)(Zr)(Al2O3). The catalyst preparation method affected the methanol conversion, hydrogen yield and carbon monoxide formation significantly. Incorporation of zirconia in Cu(Zn)(Al2O3) catalyst enhanced the catalytic activity, hydrogen selectivity and also lower the CO formation. Catalyst Cu(Zn)(Zr)(Al2O3) with composition Cu/Zn/Zr/Al:12/4/4/80 prepared by co-precipitation method was the most active catalyst giving methanol conversion up to 97% and CO concentration up to 400 ppm. Catalysts were characterized by atomic absorption spectroscopy (AAS), Brunauer-Emett-Teller (BET) surface area, pore volume, pore size and X-ray powder diffraction (XRPD). The XRPD patterns revealed that the addition of zirconia improves the dispersion of copper which resulted in the better catalytic performance of Cu(Zn)(Zr)(Al2O3). The time-on-stream (TOS) catalysts stability test was also conducted for which the Cu(Zn)(Zr)(Al2O3) catalyst gave the consistent performance for a long time compared to other catalysts.  相似文献   

17.
The selective production of hydrogen via steam reforming of methanol (SRM) was performed using prepared catalysts at atmospheric pressure over a temperature range 200–260°C. Reverse water gas shift reaction and methanol decomposition reactions also take place simultaneously with the steam reforming reaction producing carbon monoxide which is highly poisonous to the platinum anode of PEM fuel cell, therefore the detailed study of effect of catalyst preparation method and of different promoters on SRM has been carried out for the minimization of carbon monoxide formation and maximization of hydrogen production. Wet impregnation and co-precipitation methods have been comparatively examined for the preparation of precursors to Cu(Zn)(Al2O3) and Cu(Zn)(Zr)(Al2O3). The catalyst preparation method affected the methanol conversion, hydrogen yield and carbon monoxide formation significantly. Incorporation of zirconia in Cu(Zn)(Al2O3) catalyst enhanced the catalytic activity, hydrogen selectivity and also lower the CO formation. Catalyst Cu(Zn)(Zr)(Al2O3) with composition Cu/Zn/Zr/Al:12/4/4/80 prepared by co-precipitation method was the most active catalyst giving methanol conversion up to 97% and CO concentration up to 400 ppm. Catalysts were characterized by atomic absorption spectroscopy (AAS), Brunauer-Emett-Teller (BET) surface area, pore volume, pore size and X-ray powder diffraction (XRPD). The XRPD patterns revealed that the addition of zirconia improves the dispersion of copper which resulted in the better catalytic performance of Cu(Zn)(Zr)(Al2O3). The time-on-stream (TOS) catalysts stability test was also conducted for which the Cu(Zn)(Zr)(Al2O3) catalyst gave the consistent performance for a long time compared to other catalysts.  相似文献   

18.
The electrocatalytic activity of composite anodes, consisting of micron-scale sized Pt particles and nanocrystalline Ce0.8Gd0.2O2-δ(CGO) prepared by the cellulose-precursor technique, was evaluated for the oxidation of dry methane in a solid oxide fuel cell (SOFC) with zirconia-based electrolyte at 1173 K. Increasing current density above 100 mA/cm2 and the corresponding decrease of CH4/O2 ratio down to 2–3 suppressed carbon formation, but decreased CO/CO2 molar ratio in the product mixture to 0.3–0.9. The methane conversion rate was found to increase linearly with current, suggesting an increasing role of total CH4 oxidation by oxygen electrochemically supplied onto the anode surface. The results show that, although ceria-based anode components are well known to improve SOFC performance, their presence leads to high CO2 selectivity and thus seems inappropriate for the generation of synthesis gas in SOFC-type reactors.  相似文献   

19.
The Fe/ZrO2 catalyst (1% Fe by weight) shows a strong adsorption capacity toward the nitric oxide (at room temperature the ratio NOFe is ca. 0.5) as a consequence of the formation of a highly dispersed iron phase after reduction at 500–773 K. Nitric oxide is adsorbed mainly as nitrosyl species on the reduced surface where the Fe2+ sites are prevailing, but it is easily oxidised by oxygen forming nitrito and nitrato species adsorbed on the support. However, in the presence of a reducing gas such as hydrogen, carbon monoxide, propane and ammonia at 473–573 K the Fe-nitrosyl species react producing nitrogen, nitrous oxide, carbon dioxide and water, as detected by FTIR and mass spectrometers. The results show that nitric oxide reduction is more facile with hydrogen containing molecules than with CO, probably due the co-operation of spillover effects. Experiments carried out with the same gases in the presence of oxygen show, however, a reduced dissociative activity of the surface iron sites toward the species NOχ formed by NO oxidation and therefore the reactivity is shifted to higher temperatures.  相似文献   

20.
A Y2Ti2O7/Al2O3 multilayer, exhibiting high thermal reflectivity and oxidation resistivity, holds potential as a functional surface coating for advanced gas turbine blades. Slight Al doping of Y2Ti2Ohas been found to significantly improve the structural stability of the multilayer, the detailed mechanism of which remains unclear. Hence, we examined the site occupancies of doped Al using high-angular resolution electron channeling X-ray spectroscopy with two-dimensional rocking of the incident electron beam. A statistical linear regression analysis of a set of observed ionization channeling patterns (ICPs) of fluorescent X-rays quantitatively confirmed that Al3+ preferentially occupied the Ti4+ site, rather than the Y3+ site, because of the large difference in the ionic radii of Al3+ and Y3+. Furthermore, the comparison of theoretical and experimental X-ray ICPs showed that oxygen vacancies VO were introduced at the 48f site, the first-nearest neighbor of the Ti site, which was consistent with the hypothesis that oxygen vacancies compensate for the local charge imbalance associated with preferential substitution of Al3+ for Ti4+. Our findings can aid in improving the thermal properties of environmental barrier coatings applied to advanced jet engines and also demonstrate the utility of beam-rocking schemes for investigating dopant effects in various functional materials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号