首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
Abstract

Liquid bridges are believed to play an important role in improving the recovery of fractured reservoirs. However, little is known about the stability of liquid bridges in fractured media at the pore scale. In this work, a glass micromodel representing a stack of two blocks was used at different tilt angles to monitor the frequency and stability of liquid bridges formed during free-fall gravity drainage as a function of tilt angle. It was observed that by increasing the tilt angle, the liquid bridge frequency decreased but its stability increased. This resulted in higher ultimate recovery. In addition, it was found that during the first half of the experiments, the number of bridges was higher but their stability was lower than during the second half of the tests. Moreover, no more than one stable liquid bridge was observed at tilt angles above 20°, and the bridge cross-sectional area was gradually decreased as the stability was maintained. A sequence of bridges that were formed and broken one after the other results in a higher drainage rate than a single bridge with stability equal to the overall stability of the sequence.  相似文献   

2.
Abstract

The steam-assisted gravity drainage (SAGD) process has been found as a promising enhanced oil recovery (EOR) process to recover bitumen and heavy oils. A few studies were done on the SAGD process in naturally fractured reservoirs. The effects of various reservoir variables and operational parameters on production profile were simulated using commercial software. The results showed that three different periods of oil production exist in SAGD process at naturally fractured reservoirs. At first, fractures depletion in the near well region (NWR) affect mainly the initial oil production rate. However, the preheated NWR matrixes cause the oil rate not to decrease suddenly. Then, due to rising of steam into upper layer fractures, oil rate increases and therefore the first flag of the oil rate pulse occurs. At third period, another flag of oil rate pulse with a reduction trend is observed due to fractures depleting and starting of oil drainage from its surrounded matrix blocks. The second and third period occur again as steam penetrates into another block in above well region (AWR). The number of oil rate pulses shifts to left by increasing preheating period and fracture density and also by decreasing well pair length. The number of pulses also increases with reduction in well pair length and fracture density. By increasing well spacing and fracture permeability and also by decreasing production bottom hole pressure and fracture density the pulses vanish.  相似文献   

3.
This paper addresses a study of gas–oil gravity drainage in fractured carbonate rock subjected to gas injection in low interfacial tension. The purpose of the experiments described in the paper was to investigate gas injection in fractured carbonate reservoirs in both secondary and tertiary cases (after water injection), focusing on gravity drainage using equilibrium gas followed by re-pressurization. Gas injection experiments were performed on 20 cm long and low permeable outcrop chalk core surrounded with a fracture established with a novel experimental set-up in reservoir conditions. The core was saturated with binary mixture live oil consisting of C1 and C7 of a known composition, while the fracture was filled with sealing material to obtain a homogeneous saturation. After core initialization, the sealing material was removed by increasing the temperature to higher than its melting point and displaced by live oil. Gas was then injected into the fracture and gravity drainage experiments were performed in low interfacial tension (< 0.5 mN/m) where the IFT between the phases were measured experimentally by selecting the proper pressure and temperature.Experiments were performed at different pressures and reversibility of the effect of the interfacial tension was checked by re-pressurization process. The oil recovered from the bottom side of the block was measured versus time.Based on the results of this study, the recovery of oil showed a significant increase by re-pressurization in gravity drainage process. It was also clear that low IFT gravity drainage is capable to recover a significant amount of oil in fractured reservoirs even after water injection.  相似文献   

4.
Accurate fluid flow simulation in geologically complex reservoirs is of particular importance in construction of reservoir simulators. General approaches in naturally fractured reservoir simulation involve use of unstructured grids or a structured grid coupled with locally unstructured grids and discrete fracture models. These methods suffer from drawbacks such as lack of flexibility and of ease of updating. In this study, I combined fracture modeling by elastic gridding which improves flexibility, especially in complex reservoirs. The proposed model revises conventional modeling fractures by hard rigid planes that do not change through production. This is a dubious assumption, especially in reservoirs with a high production rate in the beginning. The proposed elastic fracture modeling considers changes in fracture properties, shape and aperture through the simulation. This strategy is only reliable for naturally fractured reservoirs with high fracture permeability and less permeable matrix and parallel fractures with less cross-connections. Comparison of elastic fracture modeling results with conventional modeling showed that these assumptions will cause production pressure to enlarge fracture apertures and change fracture shapes, which consequently results in lower production compared with what was previously assumed. It is concluded that an elastic gridded model could better simulate reservoir performance.  相似文献   

5.
低渗透油藏裂缝动态渗吸机理实验研究   总被引:40,自引:3,他引:37  
根据低渗透油藏裂缝与基质交渗流动的理论模型和物理模型,建立了裂缝与基质之间动态渗吸的实验方法并就裂缝内驱替速度、油水黏度比、润湿性,初始含水饱和度等参数对动态渗吸效果的影响进行了实验研究.对于低渗透裂缝性油藏,在压力梯度作用下水在裂缝内流动,同时由于毛细管力作用水渗吸到基质内,渗吸到基质中的水将油替换出来渗流到裂缝中,注入水再将裂缝中的油驱替到出口端,这就是裂缝与基质之间的交渗流动.动态渗吸实验结果表明:在本实验条件下,存在一个最佳驱替速度(3.0 mL/h),渗吸效率最高为35.5%;在一定的驱替速度范围内,由干毛细管力与黏性力的共同作用,渗吸效果最好.亲水岩心的动态渗吸效果最好.油水黏度比越小,动态渗吸效果越好.初始含水饱和度越高,毛细管力越小,动态渗吸效果越差.图6参20  相似文献   

6.
对于缝洞型碳酸盐岩油藏,缝洞组合方式多样且缝洞连通关系复杂,很难通过测井、试井以及地质建模等方法进行井间的储层预测。为此提出了井间示踪剂测试与油藏数值模拟相结合的评价方法。该方法通过对示踪剂测试曲线进行分析和数值模拟拟合可以实现对油藏油水井间连通关系的认识。在分析井间示踪剂测试的基本理论和数值模拟方法的基础上,进行了实例分析。结果表明:运用该方法能较为准确地评价流体的波及状况、注水受效情况;认识注入流体流向、流速信息;确定裂缝的发育状况以及区块的剩余油分布。对于进一步认识缝洞型油藏的非均质性特征以及地层缝洞连通关系起到了积极的指导作用。  相似文献   

7.
冀东油田边水油藏历经多年天然水驱开发后,目前处于高含水阶段,亟需改变开发方式,而气体辅助重力驱能够利用重力形成次生气顶,自上而下驱替原油,从而实现控水增油稳产。应用数值模拟方法,建立“一注三采”的边水油藏数值模拟模型,分析了水平渗透率、地层倾角、水体倍数和原油黏度对气体辅助重力驱开发效果的影响规律,结合重力准数量化分析了各影响参数与气驱采收率的关系,建立了边水油藏高含水后期气体辅助重力驱适应区块筛选标准及参数界限,并应用于冀东油田12个开发单元。结果表明:储层渗透率高、地层倾角大、原油黏度小的储层更适合天然水驱后气体辅助重力驱;建立水驱后气体辅助重力驱筛选标准为油藏渗透率大于700 mD、原油黏度小于3 mPa·s、倾角大于10°、水体倍数大于400倍;水驱后气驱可提高采收率约15%;筛选结果为冀东油田C区块最适合水驱后气体辅助重力驱开发,其次为H区块和K区块。该方法对于油藏天然水驱后气体辅助重力驱适应区块筛选具有指导意义。  相似文献   

8.
Abstract

One of the most important concerns regarding prediction of production performance in naturally fractured reservoirs is the issue of re-infiltration phenomena.

In this study, the modeling of a simple re-infiltration process with no effect of capillary continuity between blocks is presented by extending the gravity drainage mechanism for a single block.

First, a qualitative analysis of the gravity drainage process through porous media was conducted and the role of gravity and capillary forces was investigated.

Then a model for one-dimensional gravity drainage in a single block was developed in dimensionless form, a modified version of which can be found in the literature. Then, using the method of separation of variables, the corresponding partial differential equation was solved for a single block with certain boundary and initial conditions.

The upper boundary is a no-feed boundary and at the lower boundary the gas saturation is always zero. At the initial condition, the gas saturation is equal to zero throughout the block.

In order to model the simple re-infiltration process, the above-mentioned problem for concept was used and, based on the fact that the blocks of a stack governed by simple re-infiltration process act as single block, using a MATLAB program (The MathWorks, Inc., Natick, MA), the rate of drainage and cumulative production as function of time were obtained. The results are in very good agreement with the nature of the process in an actual case. This method can be extended to solve the problem of a stack of N blocks.  相似文献   

9.
大港油田低渗薄互层油藏整体压裂技术研究   总被引:1,自引:0,他引:1  
针对大港油田油藏评价和产能建设重点区块——官984断块,开展了低渗、薄互层整体压裂改造技术的研究和应用工作。根据该断块油层薄、泥质夹层等特点,在压裂工艺上重点研究应用了支撑剂粒径组合、控制裂缝纵向延伸、压裂油层保护、压裂液快速破胶和裂缝强制闭合五大压裂配套技术。经现场实施,在压裂投产的8口油井中,平均单井产量达到了13.3t/d,整体压裂改造效果明显。  相似文献   

10.
The drainage areas (and volumes) near hydraulically fractured wells, computed and visualized in our study at high resolution, may be critically affected by the presence of natural fractures. Using a recently developed algorithm based on complex analysis methods (CAMs), the drained rock volume (DRV) is visualized for a range of synthetic constellations of natural fractures near hydraulic fractures. First, flow interference effects near a single hydraulic fracture are systematically investigated for a variety of natural fracture sets. The permeability contrast between the matrix and the natural fractures is increased stepwise in order to better understand the effect on the DRV. Next, a larger-scale model investigates flow interference for a full hydraulically fractured well with a variety of natural fracture sets. The time of flight contours (TOFCs) outlining the DRV are for all cases with natural fractures compared to a base case without any natural fractures. Discrete natural fractures, with different orientations, hydraulic conductivity, and fracture density, may shift the TOFC patterns in the reservoir region drained by the hydraulically fractured well, essentially shifting the location of the well’s drainage area. The CAM-based models provide a computationally efficient method to quantify and visualize the drainage in both naturally and hydraulically fractured reservoirs.  相似文献   

11.
蒸汽超覆对块状超稠油油藏剩余油分布影响研究   总被引:5,自引:0,他引:5  
利用测井资料,结合油藏地质特征,建立了非均质地质模型。通过高温吸汽剖面、井温剖面、产液剖面等测试资料的分析,利用数值模拟手段研究了蒸汽吞吐开采过程中蒸汽的超覆作用,揭示了蒸汽超覆导致独特的油层温度分布特征及井间剩余油分布特征。研究表明,通过改变油井射孔方式、调整注汽参数等措施可以有效地减缓蒸汽超覆,提高油层纵向动用程度,降低油层纵向上的剩余油。在油层下部钻水平井,采取直井与水平井组合重力泄油方式,可以有效地动用井间剩余油,提高原油采收率。  相似文献   

12.
对于致密油储层来说,目前国内外对其开采主要是通过压裂形成人工裂缝增加储层的渗流能力,提高原油产量。然而在压裂施工的过程中势必会造成压裂液对地层的伤害及对支撑裂缝导流能力的伤害。弄清压裂液对人工裂缝渗透率的影响因素,对于提高致密油储层压裂改造效果及提高原油产量有着重要的意义。本文是针对致密油储层的真实岩心人工裂缝,进行室内试验研究,主要从压裂液破胶液对人工裂缝的伤害出发,研究了破胶液对人工裂缝的伤害及对渗透率的影响,支撑剂的分布对人工裂缝渗透率的影响及破胶液对支撑剂分布的影响等几个方面进行了系统的研究。并得出了影响人工裂缝渗透率的主要因素是裂缝断面粗糙度、支撑剂的运移及裂缝表面的性质等。  相似文献   

13.
我国陆上超稠油油藏储量丰富,但因在油层条件下原油呈“固态”,油藏非均质性强,常规热采技术难以有效开发。中国石油集团经过近15年持续攻关,创新强非均质超稠油油藏泄油理论方法,创建强非均质超稠油蒸汽辅助重力立体泄油系统,研发高温高压钻采工艺体系,配套高温复杂采出液水/热循环利用等系列技术,形成了适合于我国陆相强非均质超稠油油藏高效开发的蒸汽辅助重力泄油技术(SAGD/VHSD)。新一代超稠油油藏高效开发和提高采收率的主体开发技术支持了新疆浅层超稠油油藏的高效开发和辽河油田中深层超稠油油藏提高采收率工程建设,支撑了稠油千万吨稳产。“双碳”背景下,超稠油开发技术将主要向原位改质,电加热辅助蒸汽,风、光、氢储联合产生蒸汽等绿色环保的技术体系发展。  相似文献   

14.
致密油藏体积压裂建模理论与方法   总被引:1,自引:0,他引:1  
致密油藏储层渗透率低,地层流体向裂缝渗流受到限制,常规压裂增产幅度不高.而采用体积压裂,“打碎”储集层,形成复杂缝网,可实现裂缝与油藏的接触面积和体积最大.为有效描述致密油藏体积压裂,采用双渗模型模拟SRV区域,然后用对数网格步长加密,分别描述天然裂缝、人工缝网、基质系统.采用Latin Hypercube方法,对模型进行敏感性分析,找出了影响产油量和产水量的敏感性因子并进行排序.采用DECE方法,通过多次自动历史拟合反推人工缝网和天然裂缝参数.最后通过Petrel软件建立基质模型,作为双渗模型的基质系统,历史拟合反推得到的裂缝参数作为裂缝系统,建立完整的双渗模型,并进行生产预测,证明了致密油藏体积压裂采用此建模方法的可行性.  相似文献   

15.
油藏立体开发探讨   总被引:6,自引:0,他引:6  
为有效开发辽河油田潜山稀油油藏、隔夹层发育的中深层块状稠油油藏及特深层块状稠油油藏,建立了多段多层水平井叠置、直井注汽平面驱替加水平井垂向重力泄油、叠置双水平井注汽排液加直井采油3种立体开发模型,采用现场测试、物理模拟、数值模拟等技术研究了3种立体开发方式的开发机理。潜山稀油油藏立体开发机理为分段均压作用、垂向重力作用及立体联供作用;隔夹层发育的中深层块状稠油油藏立体开发机理为重力泄油和蒸汽驱作用;特深层块状稠油油藏立体开发机理为重力泄水作用、减少热损失作用和提高采注比作用。辽河油田兴古潜山稀油油藏、杜84块兴Ⅵ油层组中深层块状超稠油油藏、洼59块特深层块状稠油油藏现场试验表明,3种立体开发方式可大幅度增加原油产量、实现油田高效开发。  相似文献   

16.
双229—洼111区块新增探明石油地质储量大,但品位低,新井投产后产量低且递减快,经济效益差,难以实现储量快速动用与大规模建产。按照整体部署、分批实施的开发原则,优选储集层稳定区域开辟效益建产试验区。针对储集层埋藏深、物性差、倾角高的特点,利用控制变量法,采取分组类比的方式,将室内可行性研究与矿场实践结合,分别就储集层改造和能量补充方面开展探索。结果表明,与不压裂、常规压裂、常规分层压裂和高液量压裂相比,分簇缝网压裂投产效果较好,而直井大排量低砂比压裂可进一步提高投产初期产量;相比水驱,顶部注天然气近混相重力辅助稳定驱可提高采收率6%,可作为研究区最有效的补能方式。通过分簇缝网压裂提高油井初期产量,利用注天然气近混相重力辅助稳定驱有效控制产量递减,可实现该区块低品位储量的效益开发。  相似文献   

17.
受储层非均质性等因素的影响,人工裂缝方向可能偏离井网方向.若裂缝参数设计不合理,则会给油田开发带来风险.为此,对低渗透油藏裂缝方向发生偏转时井网与水力裂缝适配性进行了研究.采用流线模拟技术,分析了菱形反九点井网压裂后的渗流场特征.以华庆油田X井区为例,建立了裂缝方向发生偏转时的压裂数值模拟模型,研究了不同井裂缝参数对生产动态的影响.结果表明:当裂缝方向发生偏转时,压裂井网渗流场会发生明显变化,应根据流线分布特点重新划分井组模拟单元;不同井处缝长对生产动态的影响程度不同,且各井裂缝之间存在明显的干扰现象;增加处于裂缝不利方位上的边井处缝长,提高采出程度效果较差,该井处裂缝不易过长,而在一定范围内增加处于裂缝有利方位上的边井和角井处缝长,提高采出程度效果显著,可适当增加其缝长.利用正交试验,优选出裂缝方向发生偏转时与井网相匹配的最佳裂缝参数组合为:1号边井、2号边井和角井处的裂缝穿透比分别为0.3,0.7和0.6,裂缝导流能力为30 μm2· cm.  相似文献   

18.
致密油气藏裂缝介质的压力敏感性对油气藏开发效果具有显著影响。基于物质守恒理论,通过理论推导建立了基质和裂缝的压力敏感方程;同时,通过开展单条裂缝压力敏感渗流物理模拟实验,研究裂缝变形特征和介质渗透率变化特征,并利用实验结果验证了压力敏感裂缝性介质渗透率模型的合理性。研究表明:建立的基质和裂缝压力敏感方程是关于流体压力的函数,能够解决常规压力敏感方程中变形系数确定困难的问题,增强了压力敏感方程在实际致密油藏开发中的适应性。实验中发现流体压力下降,基质块发生膨胀使得基质块之间的裂缝闭合,开度变小,介质渗透率变小;流体压力升高时,基质块发生收缩,使得基质块之间裂缝开启,开度增大,介质渗透率变大。对比实验模拟结果与基于实验参数的渗透率模型的计算结果,验证了渗透率模型的合理性。通过研究,揭示了致密油藏裂缝介质的压力敏感变形机理,又为裂缝介质的渗透率表征奠定了基础。  相似文献   

19.
The existence of vugs or cavities in naturally fractured reservoirs has long been observed. Even though these vugs are known for their large attribution to reserves of oil, natural gas, or groundwater, few quantitative investigations of fractured vuggy reservoirs have been conducted. In this paper, a multiple-continuum conceptual model is presented, based on geological data and observations of core samples from carbonate formations in China, to investigate single-phase and multiphase flow behavior in such vuggy fractured reservoirs. The conceptual model has been implemented into a three-dimensional, three-phase reservoir simulator with a generalized multiple-continuum modeling approach. The conceptual model considers fractured vuggy rock as a triple- or multiple-continuum medium, consisting of (1) highly permeable and well-connected fractures, (2) low-permeability rock matrix, and (3) various-sized vugs. The matrix system may contain a large number of small or isolated cavities, whereas vugs are larger cavities, indirectly connected to fractures through small fractures, microfractures or matrix. Similar to the conventional double-porosity model, the fracture continuum is primarily responsible for the occurrence of global flow, while vuggy and matrix continua, providing storage space, are locally connected to each other and interacting with globally connecting fractures. In addition, flow in fractured vuggy reservoirs may be further complicated by occurrence of non-Darcy's and other nonlinear flow behavior, because of large pore space and high-permeability flow channels. To account for such complicated flow regime, our model formulation includes non-Darcy flow using the multiphase extension of the Forchheimer equation as well as flow according to parallel-wall fracture and tube models, based on solutions of flow through a parallel-wall, uniform fracture and Hagen-Poiseuille tube flow.  相似文献   

20.
天然裂缝性油藏的离散裂缝网络数值模拟方法   总被引:13,自引:1,他引:12  
姚军  王子胜  张允  黄朝琴 《石油学报》2010,31(2):284-288
针对裂缝性油藏中大裂缝、微细裂缝和孔隙等多种储渗介质共存的现象,将大裂缝作为控制流体流动的一维实体,组成离散裂缝网络,进行显式表示,将孔隙和微细裂缝组成的系统作为基岩介质,建立了天然裂缝性油藏两维两相数值模拟模型。采用加权余量法,建立有限元方程并进行了求解。对油藏有无裂缝及大裂缝的方位、长度和分布对水驱油的影响进行了研究。结果表明:大裂缝的存在会严重改变水驱油藏中注入水前缘的前进方向和速度,大裂缝与注采井间连线夹角越小及长度越大,都会导致注入水窜进越严重,从而使得油井见水早,含水率高;多条大裂缝的存在会造成剩余油分布的极度非均质及剩余油富集区的形成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号