首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 162 毫秒
1.
On the basis of an analysis, the bitumen produced from Inner Mongolia oil sand belongs to a kind of sour naphthenic based oil with the properties of high density (ρ20 = 0. 9996 g·cm?3), high viscosity (υ100 = 1553/(mm2·sec?1)), rich resin, and asphalt. After a series of fractions is cut by true boiling distillation (TBP) SBD-β instrument and analyzed by corresponding instruments, the processing scheme of tar sand bitumen is proposed. The initial boiling point is 281°C, and the yield of diesel, lube oil, and residual oil is 4.54%, 16.73%, and 38.06%, respectively.  相似文献   

2.
Abstract

Thermal visbreaking of inner Mongolia oil sand bitumen was conducted at several temperatures for different lengths of time in the laboratory. The viscosity of the thermally-treated oil was reduced dramatically with thermal treatment under the condition of adding 0.3 wt% anti-coking agent, the oil sand bitumen reacting at 410°C and 45 min. The kinematic viscosity (100°C) of visbreaking oil is reduced to 138.25 mm2·s?1 and the qualities of it are conformed to 7# Chinese Standard for Fuel Oil, which can directly be regarded as product.  相似文献   

3.
The resources of heavy oil and bitumen are more than those of conventional light crude oil in the world. Diluting the bitumen with liquid solvent can decrease viscosity and increase the empty space between molecules. Tetradecane is a candidate as liquid solvent to dilute the bitumen. Owning to the sensitivity of enhanced oil recovery process, the accurate approximation for the viscosity of aforementioned mixture is important to decrease uncertainty. The aim of this study was to develop an effective relation between the viscosity of Athabasca bitumen and heavy n-alkane mixtures based on temperature, pressure, and weight percentage of n-tetradecane using the least square support vector machine. This computational model was compared with the previous developed correlation and its accuracy was confirmed. The value of R2 and MSE obtained 1.00 and 1.02 for this model, respectively. This developed predictive tool can be applied as an accurate estimation for any mixture of heavy oil with liquid solvent.  相似文献   

4.
The bitumen and heavy oil reservoirs are more in number than light crude oil reservoirs in the world. To increase the empty space between molecules and decrease viscosity, the bitumen was diluted with a liquid solvent such as tetradecane. Due to the sensitivity of enhanced oil recovery process, the accurate approximation for the viscosity of mentioned mixture is important. The purpose of this study was to develop an effective relation between the viscosity of Athabasca bitumen and heavy n-alkane mixtures based on pressure, temperature, and the weight percentage of n-tetradecane using the adaptive neuro-fuzzy inference system method. For this model, the value of MRE and R2 was obtained as 0.34% and 1.00, respectively; so this model can be applied as an accurate approximation for any mixture of heavy oil with a liquid solvent.  相似文献   

5.
Abstract:

Liquid-phase mutual diffusion coefficients are a key parameter in reservoir simulation models related to both primary production and envisioned secondary recovery processes for heavy oil and bitumen. The measurement of liquid-phase mutual diffusion coefficients in bitumen and heavy oil + light hydrocarbon or gas mixtures present numerous experimental and data analysis challenges due to the viscosity and opacity of the mixtures, the variability of density, viscosity and mutual diffusion coefficient with composition, and the multi-phase nature of these mixtures. Data analysis challenges are particularly acute. For example, recently reported mutual diffusion coefficient values for liquid mixtures of bitumen + carbon dioxide vary over three orders of magnitude when different analysis methods are applied to the same experimental data. In this contribution, we illustrate the importance of measuring composition profiles within liquids as a function of time, as a basis for mutual diffusion coefficient computation, and for allowing explicitly for the variation of diffusion coefficient and liquid density with composition in the analysis of composition profile data. Such inclusions eliminate apparent temporal variations of mutual diffusion coefficients and yield values consistent with relevant theories and exogenous data sets. Liquid-phase mutual diffusion coefficients computed for the mixtures Athabasca Bitumen + pentane and Cold Lake Bitumen + heptane exemplify the experimental and data analysis approaches.  相似文献   

6.
1. Introduction Commercial recovery of bitumen from oil sands iscurrently achieved by means of water based separationprocesses. While most of these separation methods arebased on the Hot Water Extraction Process, the need toconserve energy has resulted …  相似文献   

7.
Viscosity is the most crucial fluid property on recovery and productivity of hydrocarbon reservoirs, more particularly heavy oil reservoirs. In heavy and extra heavy oil reservoirs e.g. bitumen and tar sands more energy is required to be injected into the system in order to decrease the viscosity to make the flow easier. Therefore, attempt to develop a reliable and rapid method for accurate estimation of heavy oil viscosity is inevitable. In this study, a predictive model for estimating of heavy oil viscosity is proposed, utilizing geophysical well logs data including gamma ray, neutron porosity, density porosity, resistivity logs, spontaneous potential as well as P-wave velocity and S-wave velocity and their ratio (Vp/Vs). To this end, a supervised machine learning algorithm, namely least square support vector machine (LSSVM), has been employed for modeling, and a dataset was provided from well logs data in a Canadian heavy oil reservoir, the Athabasca North area. The results indicate that the predicted viscosity values are in agreement with the actual data with correlation coefficient (R2) of 0.84. Furthermore, the outlier detection analysis conducted shows that only one data point is out of the applicability of domain of the develop model.  相似文献   

8.
Abstract

The extraction of four Chinese oil sands from Sinjiang and Inner Mongolia Autonomous Regions with Dean-Stark extractor were investigated. The mineral composition and sand grain distribution were determined and the bitumens were separated into saturates, aromatics, resin-I and resin-II, asphaltenes. The structure parameters and molecular model were made for the bitumens. Elemental analysis, molecular weight, FTIR, 1H-NMR were made for the bitumen fractions. The results show that the molecular structure of Mongolia bitumens have more polycyclic aromatics than that of Sinjiang bitumen. It is believed that the extraction of Sinjiang oil sand bitumen by hot alkaline water is much easier than Mongolia oil sand due to the difference of the viscosity of bitumen, the molecular structure and other physico-chemical properties of the bitumens.  相似文献   

9.
ABSTRACT

Insoluble organic matter (humic matter) present in oil sands can alter the wettability of the inorganic matrix and thereby cause serious problems during bitumen recovery.

Using a cold water agitation test, solids rich in organic matter were isolated from various oil sands which were chosen to reflect different behavior in the hot water extraction process.13C NMR examination of these separated solids showed significant structural variations between samples isolated from different oil sands. Humic matter from Utah oil sand appeared to be more aliphatic than that derived from Athabasca oil sand.

Humic acids extracted from organic rich solids as a result of prolonged treatment with 2% NaOH show remarkable similarity in their 13C NMR spectra. Humins differ substantially in the relative contribution of the terrestrial and marine source material. There was apparent correspondence between poor bitumen separation and the presence of humin with highly paraffinic structures.  相似文献   

10.
The most of oil reservoirs in the world are heavy oil and bitumen reservoirs. Due to high viscosity and density of these types of reservoirs the production has problems so importance of enhanced oil recovery (EOR) processes for them is clear. The injection of solvents such as tetradecane is known as one of methods which improve oil recovery from bitumen reservoirs. In the present investigation, the Least squares support vector machine (LSSVM) algorithm was used to estimate density of Athabasca bitumen and heavy n-alkane mixture in term of temperature, pressure and weight percent of the solvent. The Root mean square error (RMSE), average absolute relative deviation (AARD) and the coefficient of determination (R2) for total dataset are determined 0.033466, 0.0025686 and 1 respectively. The predicted results indicate that the LSSVM algorithm has potential to be a predicting machine for the bitumen-heavy alkane mixture density prediction.  相似文献   

11.
Abstract

Oil sand, which is found in various deposits around the world, consists mostly of sand, surrounded by up to 18 wt% bitumen. The largest deposits known are situated in northern Alberta, Canada, where reserves of bitumen are estimated to be 1.7 trillion barrels. Bitumen is similar to heavy oil, but with much higher viscosity and density. The two main commercial oil sand operations in Alberta are surface mines and use aqueous flotation of the bitumen to separate it from the rest of the oil sand. Under optimal conditions up to 95% of the bitumen can be recovered, but occasionally ores are mined that create problems in extraction, and recovery can drop to 70% or less. This article discusses the microscopic morphologies of various bitumen and heavy oil streams and their relationship to processing problems. The results of extensive microscopic work have demonstrated that the bitumen in an oil sand ore is the phase most susceptible to oxidation and that the resulting changes manifest themselves in particular microscopic structures. The presence and type of these structures can be related to the processing behavior of oil sand ores. Morphological features found in froths from commercial operations are similar to those found in froths from laboratory-prepared samples. The morphological features found in froths of oxidized ores have been categorized and quantified for a variety of samples and are referred to as degraded bitumen structures. Experiments in which fresh oil sand ores were subjected to low-temperature oxidation showed that bitumen froth morphology changed dramatically compared to that of nonoxidized ores for identical bulk compositions and extraction water chemistries.  相似文献   

12.
ABSTRACT

The oxidation of sulphide minerals during storage of Athabasca oil sands causes solubilization of inorganic salts which affect recovery of bitumen during hot water extraction. DLVO and Ionizable Surface Group Model theories accurately predict that the level of soluble salts produced is sufficient to cause coagulation of the fine particles during the process which leads to a deterioration in froth quality and loss of bitumen recovery. The rate of aging is specific to each oil sand but storage of oil sands under an inert atmosphere in air-tight container at sub-zero temperatures will minimize oxidation.  相似文献   

13.
Abstract

The structural characterization of fractions of Batiraman crude oil, which is the heavy crude oil from a field in the southeastern part of Turkey, was investigated. Batiraman crude oil and its saturate, aromatic, resin, and asphaltene (SARA) fractions were seperated. Treatment of crude oil with n-heptane provided the separation of asphaltene. Maltene was collected by evaporating the n-heptane from the filtrate. Then, maltene was separeted into saturates, aromatics, and resins by SARA technique. Maltene was separated into saturate, aromatic, and resin fractions using column chromatography. SARA fractions were quantified on a weight percent basis. Fractions of Batiraman crude oil were characterized by elemental analysis, proton nuclear magnetic resonance (1H NMR) analysis, electrospray ionization mass spectrometry (ESI-MS), and Fourier transform infrared (FTIR) spectroscopy techniques.  相似文献   

14.
Abstract

It is well known fact that temperature and pressure significantly affects density and viscosity of bitumen. The present work utilizes Gene Expression Programming (GEP) approach to develop models to predict density and viscosity of bitumen. To evaluate the accuracy of proposed GEP based models, results reported by various researchers were utilized. This includes test results regarding Athabasca, Cold Lake and Gas free bitumen. The developed GEP based models were compared with the conventional empirical regression equations. The statistical analysis indicates that GEP based models work better than other existing models for density and viscosity of bitumen.  相似文献   

15.
ABSTRACT

Differences in oil sands processability and extraction yields can be dependent upon many factors including the composition of the mineral components and the organic complexes that are associated with certain minerals. These mineral-organic associations help provide the bridge which leads to carry over of bitumen with the tailings as well as carry over of water and mineral matter with the bitumen product. The nature of the organic component of clay-organic complexes extracted from various streams in an oil sands recovery process is discussed in relation to the stability of both water-in-oil and oil-in-water emulsions formed.

The samples were obtained from Suncor's oil sands extraction plant located in Fort McMurray, Alberta. Samples were obtained from throughout the extraction process from the primary froth through to the final diluted bitumen product. These samples have been studied with nuclear magnetic resonance (NMR), scanning electron microscopy (SEM) as well as with other techniques such as interfacial tension measurements. The data indicates that high water content products originate, to a great extent, from the presence of a very hydrophilic organic matrix attached to the surface of the clay and heavy metal minerals.  相似文献   

16.
Recent investigations have proved more worldwide availability of heavy crude oil resources such as bitumen than those with conventional crude oil. Diluting the bitumen through injection of solvents including tetradecane into such reservoirs to decrease the density and viscosity of bitumen has been found to be an efficient enhanced oil recovery approach. This study focuses on introducing an effective and robust density predictive method for Athabasca bitumen-tetradecane mixtures against pressure, temperature and solvent weight percent through implementation of adaptive neuro-fuzzy interference system technique. The emerged results of proposed model were compared to experimentally reported and correlation-based density values in different conditions. Values of 0.003805 and 1.00 were achieved for mean square error and R2, respectively. The developed model is therefore regarded as a highly appropriate tool for the purpose of bitumen-tetradecane mixture density estimation.  相似文献   

17.
This research article offers data on the spectroscopic elucidation of the asphaltene fraction of Nigerian bitumen in order to establish its features that might aid the developmental processes of the fossil fuel. Bitumen was extracted from the oil sands obtained from six locations where there were oil sand out-crops in Southwestern Nigeria using toluene via Soxhlet extraction and then deasphalted using n-pentane. The organic components of the precipitated asphaltenes were investigated using Fourier transform infrared spectrometry, while the elemental contents were determined using Inductively coupled plasma atomic emission spectroscopy and carbon/nitrogen analyzer. The results revealed that the average content (29.15 wt%) of Nigerian bitumen asphaltenes was less than that of Athabasca (40.10 wt%) but slightly higher than that of Cold Lake bitumen (24.40 wt%). The IR spectra of the asphaltenes indicated the presence of various organics and heteroatoms corroborating that asphaltenes composed of high molecular weight polycyclic constituents comprising of nitrogen, sulfur, and oxygen heteroatoms. The results indicated that the values of Cr, Cu, Fe, Mn, Ni, S, V, and Zn were comparatively higher in the asphaltenes than the parent bitumen due to the presence of comparatively high levels of porphyrins in the asphaltenes than the bitumen, while the concentrations of all the elements were higher in the Nigerian bitumen asphaltene than Nigerian crude oil asphaltene (except S and C). Cross plot analysis result between the asphaltenes and bitumen using their elemental mean concentrations as variables indicates that significant and positive correlation (R2 = 0.975) exists between them, indicating very strong interelement and geochemical relationships between them. The elements showed close clustering, indicating similar sources because the elements were known to associate with petroleum hydrocarbon formation. Also, apart from N, S, and C, other elements are transition metals with similar chemical affinity.  相似文献   

18.
通过使用自制的ASP试剂从印尼油砂中回收沥青,研究了油砂沥青的分离条件。结果表明适宜的分离条件如下:混合温度80℃、混合时间40min、ASP试剂与油砂的质量比为4:10、浮选时间10min,在上述条件下,沥青回收率可达86%,尾砂中沥青残余率为6%。为了进一步降低尾砂的含油量,研究了尾砂中沥青含量与尾砂粒径的关系,结果表明:随着尾砂粒径的减小,尾砂的含油量降低。对尾砂研磨30min后,采用ASP试剂抽提法进一步处理,尾砂的含油量由5.47% 降到1.25%,符合排放要求。  相似文献   

19.
利用溶剂抽提分离油砂沥青,比较了油砂沥青油的沸腾床加氢实验和焦化实验,以及油砂的干馏实验。结果表明,以甲苯为溶剂抽提分离油砂沥青,可使沥青油回收超过90%。油砂沥青油具有密度大、灰分高、盐含量高的特点,胶质沥青质质量分数超过90%。采用沸腾床加氢处理脱盐沥青油,可使其硫、残炭、镍、钒的脱除率分别达到7283%、6685%、9616%和9824%,胶质和沥青质的转化率分别为7353%和9863%,加氢产物是优质的深加工原料。采用焦化处理非脱盐沥青油,总液收6164%,焦炭产率2895%,资源相对有效利用率低。油砂直接干馏,沥青油总回收率只有7856%。从油砂沥青油的有效回收和利用上看,沸腾床加氢是最有效的手段。  相似文献   

20.
油砂中沥青的热碱水萃取分离及其影响因素   总被引:1,自引:0,他引:1  
油砂作为非常规石油资源,在能源需求不断增加和石油价格持续走高的情形下将成为重要的接替能源之一.研制了一套热碱水萃取分离装置,对中国2个地区的油砂开展了沥青的热碱水分离实验,探讨了分离过程中温度和碱的加入量、通气条件及加工助剂等因素对沥青有效分离的影响.内蒙古扎赉特旗油砂的分离实验结果表明,随着萃取热碱水温度的升高,浮选...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号