首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper presents an analysis and experimental study on the formation and distribution of machined surface residual stress in pre-stress cutting. In the first component of the paper, the mechanical and thermal effect on residual stress is analysed. The results show that machined harden layer and cutting heat transfer conditions are crucial to form residual stress in a machined surface. Residual stress has three kinds of distributions in different mechanical and thermal conditions: tensile stress, compressive stress and tensile–compressive stress. If pre-stress is applied, it would facilitate residual compressive stress in the machined surface effectively; its action is analysed with an experimental study. The experiment is carried out by hardened 40Cr alloy steel turning with different tool rounds and pre-stress loading; the results obtained in this study indicate that the tool round would redound to generate residual compressive stress in the machined surface and affect the residual stress distribution significantly, whilst pre-stress load can affect the magnitude of residual stress actively, but does not for its distribution. It is found that the experimental results of residual stress distribution are consistent with the theoretical analysis.  相似文献   

2.
IMPROVING FATIGUE STRENGTH OF METALS USING ABRASIVE WATERJET PEENING   总被引:2,自引:0,他引:2  
Abrasive waterjet (AWJ) peening has been proposed as a viable method of surface treatment for metal orthopedic devices. In this study the influence of AWJ peening on the compressive residual stress, surface texture and fatigue strength of a stainless steel (AISI 304) and titanium (Ti6Al4V) alloy were studied. A design of experiments (DOE) and an analysis of variance (ANOVA) were used to identify the primary parameters contributing to the surface texture and magnitude of surface residual stress. The influence of AWJ peening on the fatigue strength of the metals was evaluated under fully reversed cyclic loading. It was found that AWJ peening results in compressive residual stress and is primarily influenced by the abrasive size and treatment pressure. The residual stress of the AISI 304 ranged from 165 to over 460 MPa. Using the optimum treatment parameters for maximizing the residual stress, the endurance strength of Ti6Al4V was increased by 25% to 845 MPa. According to results of this study AWJ peening is a viable method of surface treatment for applications that require an increase in surface roughness and maintenance or increase in fatigue strength, qualities that most often are not available from a single process.  相似文献   

3.
Abrasive waterjet (AWJ) peening has been proposed as a viable method of surface treatment for metal orthopedic devices. In this study the influence of AWJ peening on the compressive residual stress, surface texture and fatigue strength of a stainless steel (AISI 304) and titanium (Ti6Al4V) alloy were studied. A design of experiments (DOE) and an analysis of variance (ANOVA) were used to identify the primary parameters contributing to the surface texture and magnitude of surface residual stress. The influence of AWJ peening on the fatigue strength of the metals was evaluated under fully reversed cyclic loading. It was found that AWJ peening results in compressive residual stress and is primarily influenced by the abrasive size and treatment pressure. The residual stress of the AISI 304 ranged from 165 to over 460 MPa. Using the optimum treatment parameters for maximizing the residual stress, the endurance strength of Ti6Al4V was increased by 25% to 845 MPa. According to results of this study AWJ peening is a viable method of surface treatment for applications that require an increase in surface roughness and maintenance or increase in fatigue strength, qualities that most often are not available from a single process.  相似文献   

4.
通过对钛合金TC4在拉伸状态下的铣削试验,重点研究了高速铣削对钛合金TC4(Ti6A14V)表面残余应力和表面粗糙度的影响,得到了在不同切削参数下钛合金TC4表面残余应力和表面粗糙度的实验数据.实验结果表明,拉伸装夹基本不影响表面粗糙度,但可以大大提高加工表面残余压应力并增大残余压应力层的厚度,为开展钛合金拉伸高速铣削加工提供了依据.  相似文献   

5.
王芳  毕秦岭  王晓波 《润滑与密封》2007,32(11):102-104,164
采用SRV型微动摩擦磨损实验机分别考察了Ti6Al4V-钢摩擦副在2种碳酸酯润滑下的摩擦磨损性能,并利用扫描电子显微镜和X射线光电子能谱仪分析了Ti6Al4V磨斑表面形貌和典型元素的化学状态。结果表明,2种碳酸酯作为Ti6Al4V/钢摩擦副的润滑剂所表现出的减摩抗磨和承载能力优于其相对应的脂肪醇;载荷和频率明显影响Ti6Al4V/钢摩擦副在碳酸酯润滑下的摩擦磨损行为;碳酸二-2-乙基己酯所表现出的减摩抗磨和承载能力明显优于碳酸二辛酯;2种碳酸酯对Ti6Al4V/钢摩擦副的润滑机制为在Ti6Al4V磨损表面形成吸附膜,从而起到减摩抗磨的作用。  相似文献   

6.
钛合金铣削加工表面残余应力研究   总被引:3,自引:0,他引:3  
金属切削加工引起的残余应力对零部件变形、疲劳性能有重要影响,通过选择合适的加工参数对其进行控制是可能的。目的在于研究钛合金铣削加工中铣削参数对已加工表面残余应力的影响,利用X射线衍射技术测量进给方向和铣削方向的残余应力。为保证X射线应力测量精度,采用摇摆法和峰拟合定峰方法。试验结果表明,钛合金顺铣加工表面残余应力表现为压应力,主要是由于刀具后刀面与已加工表面的挤光效应起主导作用所致。沿铣削方向和进给方向,切削参数对工件表面残余应力影响具有差异性。通过控制切削参数有可能生成定制化的应力。  相似文献   

7.
为揭示预应力切削对钛合金Ti6Al4V加工表面残余应力的调整机理,探讨切削时锯齿形切屑的形成过程,基于预应力切削原理建立了钛合金的预应力切削有限元模型,模拟了0、280 MPa和560 MPa这3种预应力下的锯齿形切屑形成过程以及已加工表面的残余应力分布。结果表明:采用预应力切削方法可以调整钛合金已加工表面的残余应力状态;预应力对锯齿形切屑的形成过程和切屑特征无明显影响;在材料弹性极限内施加越大的预应力,表面层残余压应力效果越显著,次表层最大残余压应力值越高,残余压应力层分布也越深。  相似文献   

8.
Influences of newborn calf serum on the fretting behaviors of Ti–6Al–4V and diamond-like carbon coating were investigated using a fretting-wear test rig with a cylinder-on-flat contact. The results indicated that, for the Ti–6Al–4V/Ti–6Al–4V contact, the friction coefficients were high (0.8–1.2) and the wear volumes presented an increase with the increase in the displacement amplitude under dry laboratory air conditions. Under serum-liquid conditions, the Ti–6Al–4V/Ti–6Al–4V contact presented significantly larger wear volumes under the displacement of ±?40 µm; however, it presented significantly lower friction coefficients (0.25–0.35) and significantly smaller wear volumes under the displacement of ±?70 µm. For the DLC coating/Ti–6Al–4V contact, the coating response wear maps could be divided into two areas: the coating working area (low normal force conditions) and the coating failure area (high normal force conditions). In the coating working area, the DLC coating could protect the substrate with low friction, low wear volume, and mild damage in the coating. The presence of serum had a positive influence on the tribological performance of the DLC coating. Furthermore, the positive influence was more significant under larger displacement amplitudes condition.  相似文献   

9.
Fretting behavior of Cu–Al coating on Ti–6Al–4V substrate was investigated with and without fatigue load. Soft and rough Cu–Al coating resulted in abrasive wear and a large amount of debris remained at the contact surface, which caused an increase in tangential force during the fretting test under gross slip condition. Fretting in the partial slip condition also showed the wear of coating. To characterize wear, dissipated energies during fretting were calculated from fretting loops and wear volumes were obtained from worn surface profiles. Energy approach of wear analysis showed a linear relationship between wear volume and accumulated dissipated energy. This relationship was independent of fatigue loading condition and extended from partial slip to gross slip regimes. As an alternate but simple approach for wear analysis, accumulated relative displacement range was correlated with the wear volume. This also resulted in a linear relationship as in the case of accumulated dissipated energy suggesting that the accumulated relative displacement range can be used as an alternative parameter for dissipated energy to characterize the wear. When the maximum wear depth was equal to the thickness of Cu–Al coating, harder Ti–6Al–4V substrate inhibited further increase in wear depth. Only when a considerable energy was supplied through a large value of the applied displacement, wear in the substrate material could occur beyond the thickness of coating.  相似文献   

10.
研究了含有裂纹的金属板料在激光冲击波载荷作用下裂纹尖端应力强度因子和裂纹扩展速度的变化,利用断裂力学理论,对激光冲击加载下裂尖参数计算模型进行优化,采用应力强度因子叠加法,将外加载荷引起的应力强度因子和激光冲击后残留的残余压应力引起的应力强度因子叠加,推导出下裂纹尖端应力场强度因子表达式,由此可精确计算出金属板料的裂纹萌生寿命和裂纹扩展速度,实验验证了航空钛合金Ti6Al4V激光冲击后残余应力对裂纹扩展速度的影响,从而建立了激光冲击作用对板料裂纹扩展的影响的理论模型。  相似文献   

11.
喷丸强化因素对钛合金固体粒子冲蚀抗力的影响   总被引:1,自引:0,他引:1  
探讨了喷丸强化(SP)因素(残余压应力引入、表面粗糙度增大和表面加工硬化等)对Ti6Al4V钛合金固体粒子冲蚀(SPE)行为的影响和作用机制,为充分发挥SP改进航空发动机零部件服役性能的潜力提供依据。结果表明:Ti6Al4V合金表面直接喷丸处理,其SPE抗力无明显改变;SP处理后进行表面抛光,Ti6Al4V合金SPE抗力明显增加。SP造成的表面粗糙度增大导致了钛合金在大小冲击攻角下的SPE抗力的下降;SP引入的表面残余压应力对提高钛合金在90°大攻角下的SPE抗力起了重要作用,原因是SP残余压应力增加了裂纹闭合力和抑制了疲劳裂纹早期扩展;SP引起的表面加工硬化作用对提高钛合金在30°小攻角下的SPE抗力有重要贡献,这归于加工硬化提高了材料表面在小攻角下的微犁削抗力。  相似文献   

12.
Conventional studies on residual stresses induced by manufacturing processes have focused on the average residual stress value over the processed surface area. However, what dictates the fatigue life of a manufactured surface is its weakest point. Thus, it is not the average value of the stress but the local extreme that is most relevant for safety considerations. Therefore, it is very important to study the variations of residual stresses over the machined surface. This paper is the continuation of the work [1] investigating the magnitude of surface residual stress scatter between the face-turned and ground samples. The objective of this research is to test the hypotheses that the scatter of surface residual stresses over the faced samples is smaller than that of the ground ones and that the scatter of surface residual stresses varies significantly among ground samples while it does not vary in a statistically significant sense among faced specimens for the given cutting conditions. In order to compare the surface residual stress variations, two sets of the specimens of Ti 6Al-4V bar are ground while the other two sets faced. The residual stresses over a small surface area (5mm × 8 mm) are measured at four locations of each machined sample using an X-ray diffraction technique. Statistical analysis of the measured residual stresses shows that the proposed hypotheses hold. Experimental data also show that a different number of grinding passes may induce a different scatter of microhardness. The possible causes and ramifications of the foregoing results are discussed. It is suggested that the variations of residual stress be included as a surface integrity parameter, joining its average value.  相似文献   

13.
通过分析单磨粒仿真模型中磨削参数对材料表面残余应力的影响,得到使材料表面残余应力稳定性更好的磨削参数值,针对Ti6Al4V合金建立热—力耦合的单磨粒平面仿真模型。单磨粒磨削深度取相应磨粒刃圆半径大小相近的数值,并得到两组使表面残余应力数值稳定性较好的磨削参数值:一组是圆锥角θ=60°、刃圆半径r=10μm的磨粒,磨削后的残余应力约为100MPa;另一组是圆锥角θ=60°、刃圆半径r=1μm的磨粒,单磨粒磨削后的残余应力约为400MPa。分析发现:磨削温度的热软化效应会使残余应力的数值降低;单磨粒圆锥角对材料表面残余应力的影响比刃圆半径的更加显著。  相似文献   

14.
Considering that the densification level and the attendant quality of selective laser melted Ti6Al4V parts depend strongly on the operating temperature of the melting system, which is mainly controlled by the processing parameters. The processing parameters of selective laser melting were thus investigated in this study to fabricate denser Ti6Al4V parts without post-processes. Temperature distribution calculation was firstly carried out based on a three-dimensional model. It was found that there exists a great temperature gradient from the surface of powder bed to the experimental platform, and the maximum depth of molten powder layer is about 45?μm, very close to the total thickness of powder bed (50?μm) under the condition of laser power of 110?W and scan rate of 0.2?m/s. The Ti6Al4V parts with lower porosity and higher density were then well fabricated by experimental method under the condition of laser power of 110?W and scan rate of 0.2?m/s. The experimental results also indicate that the microstructures exhibit more and more pores and the layer structures are more and more obvious with the increase in the scan rate. Moreover, the microhardness measurement yields different values with increasing scan rate, owing to the increase of α phase and porosity.  相似文献   

15.
Compared with grinding, hard turning may induce a relatively deep compressive residual stress. However, the interactions between the residual stress profile and applied load and their effects on rolling contact stresses and strains are poorly understood, and are difficult to measure using the current experimental techniques due to the small-scale of the phenomena. A new 2-D finite element simulation model of bearing rolling contact has been developed, for the first time, to incorporate the machining-induced residual stress profile instead of only surface residual stresses. Three cases using the simulation model were assessed: (a) measured residual stress by hard turning, (b) measured residual stress by grinding, and (c) free of residual stress. It was found that distinct residual stress patterns hardly affect neither the magnitudes nor the locations of peak stresses and strains below the surface. However, they have a significant influence on surface deformations. The slope and depth of a compressive residual stress profile are key factors for rolling contact fatigue damage, which was substantiated by the available experimental data. Equivalent plastic strain could be a parameter to characterize the relative fatigue damage. The magnitudes of machining-induced residual stress are reduced in rolling contact. The predicted residual stress pattern and magnitude agree with the test data in general. In addition, rolling contact is more sensitive to normal load and residual stress pattern than tangential load.  相似文献   

16.
王芳  毕秦岭  王小波 《润滑与密封》2007,32(9):49-51,55
采用SRV型摩擦磨损试验机分别考察了Ti6Al4V/钢摩擦副在多种脂肪醇润滑下的摩擦磨损性能。结果表明,与液体石蜡相比,碳链长度小于碳8的脂肪醇作为Ti6Al4V/钢摩擦副的润滑剂表现出良好的润滑性能,其润滑机制是在Ti6Al4V磨损表面形成吸附膜。载荷和频率明显影响Ti6Al4V/钢摩擦副在脂肪醇润滑下的摩擦磨损行为和摩擦磨损机制:当载荷较小时,Ti6Al4V磨损表面主要发生轻微的擦伤;随着载荷增加,Ti6Al4V磨损表面擦伤严重并在更高载荷下发生较为严重犁沟和塑性变形。  相似文献   

17.
Titanium alloy is a kind of typical hard-to-cut material due to its low thermal conductivity and high strength at elevated temperatures, this contributes to the fast tool wear in the milling of titanium alloys. The influence of cutting conditions on tool wear has been focused on the turning process, and their influence on tool wear in milling process as well as the influence of tool wear on cutting force coefficients has not been investigated comprehensively. To fully understand the tool wear behavior in milling process with inserts, the influence of cutting parameters on tool wear in the milling of titanium alloys Ti6Al4 V by using indexable cutters is investigated. The tool wear rate and trends under different feed per tooth, cutting speed, axial depth of cut and radial depth of cut are analyzed. The results show that the feed rate per tooth and the radial depth of cut have a large influence on tool wear in milling Ti6Al4 V with coated insert. To reduce tool wear, cutting parameters for coated inserts under experimental cutting conditions are set as: feed rate per tooth less than 0.07 mm, radial depth of cut less than 1.0 mm, and cutting speed sets between 60 and 150 m/min. Investigation on the relationship between tool wear and cutting force coefficients shows that tangential edge constant increases with tool wear and cutter edge chipping can lead to a great variety of tangential cutting force coefficient. The proposed research provides the basic data for evaluating the machinability of milling Ti6Al4 V alloy with coated inserts, and the recommend cutting parameters can be immediately applied in practical production.  相似文献   

18.
应用Hopkinson压杆实验装置,确定了航空用钛合金Ti6Al4V高应变和高温条件下的应力-应变关系,结合Ti6Al4V合金准静态试验数据,建立了适合高速切削仿真的Johnson-Cook本构模型;通过有限元数值模拟,仿真了高速切削Ti6Al4V合金的锯齿状切屑形成过程,分析了整个锯齿状切屑形成过程的切削力、切削温度、等效塑性应变的变化,深入探讨了锯齿状切屑的形成机理;将模拟计算得到的切削力和切削温度与试验结果进行了比较,两者具有较好的一致性。

  相似文献   

19.
Ti–6Al–4V and Cr–Co alloys are extensively used in manufacturing prostheses due to their biocompatibility, high strength-to-weight ratio and high resistance to corrosion and wear. However, machining operations involving Ti–6Al–4V and Cr–Co alloys face a series of difficulties related to their low machinability which complicate the process of controlling the quality levels required in these parts. The main objective of this paper is to study the influence of cutting parameters, machine tool control accuracy and metrology procedures on surface roughness parameters and form errors in contouring operations of Ti–6Al–4V and Cr–Co workpieces. The machining performance of the two biocompatible materials is compared, focusing the study on part quality at low feed per revolution and the stochastic nature of plastic deformations at this regime. The results showed a better surface roughness control for Ti–6Al–4V, whereas for Cr–Co alloys, the performance presents high variability. In the case of form errors (sphericity), contouring errors and metrology procedures are important factors to be considered for quality assurance. In addition, the study analyses the correlation of the machining performance with different sensor signals acquired from a low cost non-intrusive multi-sensor, showing a high correlation of signals from acoustic emission sensors and accelerometers in the machining of spherical features on Ti–6Al–4V parts. The findings of this research work can be taken into account when designing prostheses components and planning their manufacturing processes.  相似文献   

20.
The available magnetic field assisted finishing process is considered as the critical stage for improvement of workpiece surface quality. This paper aims to investigate the key quality performance of an enhanced magnetic abrasive finishing in achieving nanolevel finish on Ti–6Al–4V workpieces with initial micrometer surface roughness values. The finishing media, combining the intelligent shear thickening fluids (STFs), carbonyl iron particles and SiC particles, is developed. Finishing experiments for Ti–6Al–4V workpieces are conducted using an established platform, aiming to investigate the effects of varying STFs concentration, working gap, feed rate and spindle rotational speed. It is observed from the experimental results that the developed finishing media is effective for surface finishing comparing to the finishing media without STFs. The surface roughness of 54 nm was achieved from the initial value of 1.17 μm, which improved by over 95%, under the experimental conditions of 0.8 mm working gap, 15000 mm/min feed rate, 900 rpm spindle rotational speed and 15 wt% STFs. Surface observations showed that a smooth surface without obvious scratches was obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号