首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
In the present work, coated tungsten carbide tool inserts of ISO P-40 grade were subjected to deep cryogenic treatment at ?176°C. Turning studies were conducted on AISI 1040 workpieces using both untreated and deep cryogenic treated tungsten carbide cutting tool inserts. The turning performance was evaluated in terms of flank wear of the cutting tool inserts, main cutting force and surface finish of the machined workpieces. The flank wear of deep cryogenic treated carbide tools was observed to be lower than that of untreated carbide tools in machining of AISI 1040 steel. The cutting force during machining of AISI 1040 steel was lower with the deep cryogenic treated carbide tools when compared with the untreated carbide tools. The surface finish produced on machined AISI 1040 steel workpieces was superior with the deep cryogenic treated carbide tools as compared to the untreated carbide tools.  相似文献   

2.
In spite of their environmental and human health problems, the cutting fluids still have been used widely in industry due to cutting fluid application can increase cutting performance in metal cutting. In this article, the effect of the cutting fluid on surface roughness in boring of AISI 1030 low carbon steel was investigated depending on BUE and chip formations and other cutting parameters, such as cutting speed, feed rate and tool nose radius. In most of boring experiments, the wet cutting did not show more preferable results than dry cutting. However, cutting fluid application with big nose radius and small feed rate improved the surface roughness up to 80%. This progress was attributed to a favorable chip formation as much as effective cooling.  相似文献   

3.
The nanoindentation fracture of multilayer hard coatings, such as TiN, TiN/Ti(C,N)/TiC, TiN/Ti(C,N)/TiC/Ti(C,N)/TiC and TiN/Ti(C,N)/TiC/Ti(C,N)/TiC/Ti(C,N)/TiC coatings, deposited on cemented carbide using a CVD technique are studied. It is found that these coatings have high hardness. Based on the analysis of the energy release in cracking, the fracture toughness of these coatings are calculated. The observations clearly establish a step occurs in the forcedisplacement curves at the onset of coating fracture and a straigh t line segment in the loadpenetration depth squared curves to identify the interfacial failure of coatings. The hardness, fracture toughness and antiwearability of these coatings are clearly compared. The results show that with the layes increasing, the fracture toughness and antiwearability are getting larger.  相似文献   

4.
□ Tool breakage and overcut are common fault patterns in the process of the free-form surface computer numerical control (CNC) machining. Starting from the analysis of the interactive relationship between the tool and the free-form surface, the geometrical model of the overcut fault is set up in this paper. By using superior time-frequency localization feature of the wavelet transformation and the characteristics of the neural network (NN), the feature information of each fault pattern is extracted. The identification of faults such as overcut and tool breakage is solved effectively, and a new method is proposed to identify the cut-in and cut-out cases.  相似文献   

5.
Flank and crater wear are the primary tool wear patterns during the progressive tool wear in metal cutting. Cutting forces may increase or decrease, depending on the combined contribution from the flank and/or crater wear. A two-dimensional (2D) slip-line field based analytical model has been proposed to model the force contributions from both the flank and crater wear. To validate the proposed force model, the Bayesian linear regression is implemented with credible intervals to evaluate the force model performance in orthogonal cutting of CK45 steels. In this study, the proposed analytical worn tool force model-based predictions fall well within the 75% credible intervals determined by the Bayesian approach, implying a satisfactory modeling capability of the proposed model. Based on the parametric study using the proposed force model, it is found that cutting forces decrease with the increasing crater wear depth but increase with the increasing flank wear length. Also, the predicted cutting forces are affected noticeably by the friction coefficients along the rake and flank faces and the ratio of crater sticking region to sliding region, and better knowledge of such friction coefficients and ratio is expected to further improve worn tool force modeling accuracy. Compared with the finite element approach, the proposed analytical approach is efficient and easy to extend to three-dimensional worn tool cutting configurations.  相似文献   

6.
Ti–6Al–4V is a kind of difficult-to-cut material with poor machinability by traditional machining methods, while electrical discharge machining (EDM) is suitable for machining titanium alloys. In this paper, three input machining parameters including pulse current, pulse on time and open circuit voltage were changed during EDM tests. To investigate the output characteristics; material removal rate (MRR), tool wear ratio (TWR) and different aspects of surface integrity for Ti–6Al–4V samples such as topography of machined surface, crack formation, white layer (recast layer) thickness and microhardness were considered as performance criteria. The variations of MRR and TWR versus input machining parameters were investigated by means of main and interaction effect plots and also verified by ANOVA results. The effect of pulse energy based on pulse on time and pulse current variations against recast layer thickness and microhardness was studied. The possibility of forming different chemical elements and compounds on the work surface after EDM process was investigated by EDS and XRD analyses. The experimental results revealed that general aspects of surface integrity for machined samples are mostly affected by pulse current and pulse on time. The approximate density of cracks, micro holes and pits on the work surface is intensively dependent on pulse energy variations. Although increase of pulse energy improves the material removal efficiency but leads to increase of average thickness and microhardness of recast layer.  相似文献   

7.
An experimental study has been performed for laser ablation of silicon at 1064 nm with variable pulse durations from 50 nanoseconds to 200 nanoseconds. A spatial multi-pulse enhancement effect has been revealed, which has been rarely reported in literature. The specific feature of this effect is that for multi-pulse laser ablation of silicon performed sequentially at a group of locations, the ablation efficiency and quality starting from the second location can be enhanced if the distance between adjacent locations is sufficiently small, and the ablation efficiency enhancement becomes more obvious as the distance decreases or the laser pulse duration increases. Further study is needed to understand the underlying physical mechanism. This effect, if well understood, can be utilized to significantly improve the quality and efficiency of infrared nanosecond laser silicon ablation. This will widen the practical applications of the low-cost and low-energy-consumption infrared nanosecond lasers and hence significantly decrease the manufacturing cost and energy consumption in many relevant areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号