首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 422 毫秒
1.
Supercritical carbon dioxide (scCO 2) microemulsion was formed by supercritical CO 2 , H 2 O, sodium bis(2-ethylhexyl) sulfosuccinate (AOT, surfactant) and C 2 H 5 OH (co-surfactant) under pressures higher than 8 MPa at 45 oC. The fundamental characteristics of the scCO 2 microemulsion and the minimum miscibility pressure (MMP) with Daqing oil were investigated with a high-pressure falling sphere viscometer, a high-pressure interfacial tension meter, a PVT cell and a slim tube test. The mechanism of the scCO 2 microemulsion for enhancing oil recovery is discussed. The results showed that the viscosity and density of the scCO 2 microemulsion were higher than those of the scCO 2 fluid at the same pressure and temperature. The results of interfacial tension and slim tube tests indicated that the MMP of the scCO 2 microemulsion and crude oil was lower than that of the scCO 2 and crude oil at 45 oC. It is the combined action of viscosity, density and MMP which made the oil recovery efficiency of the scCO 2 microemulsion higher than that of the scCO 2 fluid.  相似文献   

2.
针对X底水油藏油井注水后综合含水上升过快的问题,利用HB70/300型高压物性分析仪开展了该区块原油相态特征实验、注气相态特征实验,并运用细管法开展了注CO2最小混相压力实验。对比分析了CO2和N2两种性质气体注入前后原油的相态特征变化,确定了该区块原油注CO2最小混相压力,为X油藏注气提高采收率可行性提出依据。实验结果表明,X油藏原始地层压力为46.01 MPa,原油饱和压力为11.06 MPa,注N2后饱和压力上升迅速,在原始地层条件下难以实现混相,表现出典型的非混相特征;注CO2后饱和压力上升较平缓,细管法测得的最小混相压力为28.03 MPa,说明利用CO2可实现CO2的混相驱替,而且最终的驱替效果比较理想。说明该油藏可开展注CO2混相驱,为进一步的开发方案调整提供了依据和合理的建议。   相似文献   

3.
针对CO_2-EOR原油组分对混相能力影响的问题,应用界面张力消失法设计了不同碳数烃组分、不同族烃组分、不同含量烃组分混合模拟油与CO_2的最小混相压力实验,分析不同族烃组分与CO_2最小混相压力的变化规律,探寻原油中影响CO_2驱最小混相压力的关键组分。研究表明:原油中不同组分与CO_2的最小混相压力不同,相同碳数烃组分最小混相压力依次为:烷烃、环烷烃、芳香烃;同族烃的碳数越小,最小混相压力越小;相同碳数烃类的混合组分模拟油的最小混相压力小于单一烃组分的最小混相压力;原油中低碳数烷烃含量增加,最小混相压力降低,高碳数芳香烃含量增加,最小混相压力升高。该研究结果为多种类型油藏实施CO_2驱提高采收率提供了数据材料及理论支撑。  相似文献   

4.
The purpose of this research was to study the effect of CO2 injection on the geochemistry of crude oil in order to determine the probability of using geochemical parameters for monitoring CO2 injection. In this process, four oil samples from different offshore oil fields were collected, synthetic steady state oil reservoir (porous media) were made by slim tube apparatus, then CO2 injection process was done in different pressures. Various geochemical analyses were also carried out on the injected oil before and after the injection. The results show that the bulky changes on oil sample by CO2 injection. CO2 injection is more likely to precipitate complex and large molecules such as asphaltenes-resins and also large normal alkanes. In this case, the percentage of aromatic molecules was increased during injection. In general view on chromatograms, the height and abundance of all saturated compound peaks after CO2 injection were significantly decreased. However, biomarker analysis shows that CO2 injection has a tendency to change source and maturity biomarker parameters.  相似文献   

5.
低渗油藏CO_2驱油混相条件的探讨   总被引:2,自引:0,他引:2  
CO2与地层油能否达到混相状态对CO2驱油技术的应用效果有重要影响,界面张力法和细管实验法测量的最小混相压力(MMP)存在较大差异。岩心孔隙结构对原油相对体积及CO2密度的影响实验均说明,多孔介质的孔隙特征对流体物性参数产生较大影响,用细管实验MMP值作为油藏条件下CO2-原油体系MMP值的做法也需要理论完善。对影响CO2驱油混相条件的主要因素进行分析,认为岩石孔隙特征、地层压力以及注入流量对多孔介质中CO2-原油体系MMP有明显影响。渗透率下降,测量的MMP值也不同程度地降低;相对而言,平均地层压力较低的油藏,测量的MMP值也较低;对注入流量的研究认为优化流量可获得较低的MMP值。综合分析以上3个因素,初步建立计算多孔介质中CO2-原油体系MMP的方程。该研究将压力分布曲线进一步细化,补充了对不同压力间流体状态的描述。图7表1参11  相似文献   

6.
Abstract

In order to enhance oil recovery of a conventional oil reservoir by CO2 flooding, the changes in the properties of the crude oil before and after CO2 flooding are systematically investigated by on-site sampling and experimental testing. The results show that, after CO2 flooding, the light hydrocarbons of the produced crude oil is increased and the heavy hydrocarbons of the produced crude oil is decreased due to the deposition of resins and asphaltenes in the pores of the formation. In addition, the produced fluid (a mixture of oil and water) has a high water separation rate, the oil- water interface has a high tension value, and the crude oil has a high acid value and a low viscosity. The conclusions can provide a certain guidance for high-efficiency development of a conventional oil reservoir by CO2 flooding.  相似文献   

7.
CO_2驱是提高低渗透油田产量、缓解温室效应的有效途径。针对鄂尔多斯盆地油藏压力系数低、原油轻质组分含量高的特点,通过PVT和最小混相压力等测试分析方法,揭示了低压、低孔、低渗油藏CO_2驱提高采收率主要机理。开展了CO_2注入储层与无机、有机物作用后的沉淀研究,表明CO_2在无机盐溶液中不会形成沉淀堵塞孔隙,CO_2与有机质作用后沉积点高于油藏压力,且注入压力越高,CO_2在地层原油中的溶解能力越强,目标区块CO_2注入后不易形成沥青质沉淀。物模驱替实验结果表明,均质岩心的采出程度明显高于非均质岩心,且随着岩心非均质性的增加,水驱采出程度、气驱采出程度及最终采出程度均明显下降。  相似文献   

8.
Reservoir oil and gas content tends to rise up to the surface as long as their potential energy levels are sufficient. In order to amplify this energy, either during the time when oil is uprising on its inherent energy or since after, so as to facilitate the traveling of oil to the surface, enhanced oil recovery (EOR) methods come into play. Furthermore, the increasing demand for oil from one hand, and the shrinkage of producible reserves on the other hand, have made it unavoidable to undertake EOR techniques. Built in this research was a 10-element model of reservoir fluid to simulate its behavior. Furthermore, slim tube simulation was undertaken to determine minimum miscibility pressure for various gases. Then, different scenarios of natural depletion, CO2 injection, methane injection, and water injection were simulated by ECLIPSE 300 software package with the results of different scenarios compared. The results indicated water injection to be associated with higher recovery factor.  相似文献   

9.
The CO2—oil minimum miscibility pressure (MMP) is an important parameter for screening and selecting reservoirs for CO2 injection projects. For the highest recovery, a candidate reservoir must be capable of withstanding an average reservoir pressure greater than the CO2—oil MMP. Knowledge of the CO2—oil MMP is also important when selecting a model to predict or simulate reservoir performance as a result of CO2 injection. This paper, presents a new alternating conditional expectation “ACE”-based model for estimating CO2—oil MMP. The ACE algorithm estimates the optimal transformation that maximizes the correlation between the transformed dependent variable “CO2—oil MMP” and the sum of the transformed independent variables that represent reservoir temperature and different components of oil composition. Predicted values of the CO2—oil MMP from the developed ACE-based model were compared with the experimental and calculated values from the most common correlations reported in the literature for CO2—oil MMP prediction. The results showed that the ACE-based model is superior to other commonly used correlations. Regarding other correlations, the ACE-based model yielded the highest correlation coefficient (0.9878), the lowest average relative error (0.7428%), and the lowest standard deviation of error (1.2265). The text was submitted by the author in English.  相似文献   

10.
CO_2细管模型驱油效果研究   总被引:1,自引:0,他引:1  
张硕 《特种油气藏》2010,17(2):95-97,104
鉴于气驱技术对开发低渗透油藏的良好效果,运用了目前最可靠的测量最小混相压力的细管实验方法,进行了对CO2气体与原油最小混相压力的预测研究.详述了细管实验的实验条件、实验方法、具体步骤与原理.分析结果得到了注采压差、采油速度和采收率随驱替压力的变化规律,并测量了原油与CO2作用的最小混相压力,给出了合理的驱替压力范围,为油藏开采提供了参考依据.  相似文献   

11.
Abstract

In this paper, an experimental technique was developed to study the interfacial interactions between crude oil and CO2 under reservoir conditions. By using the axisymmetric drop shape analysis (ADSA) for the pendant drop case, this new technique makes it possible to measure the interfacial tensions (IFTs) between crude oil and solvents, such as CO2, at high pressures and elevated temperatures. The major component of this experimental setup is a see-through windowed high-pressure cell. In this study, the IFT of the crude-oil–CO2 system was measured as a function of pressure at two fixed temperatures. It was found that, due to mutual interfacial interactions between crude oil and CO2, their dynamic IFT gradually reduces to a constant value, i.e., the equilibrium IFT. The major interfacial interactions observed in this study include light-ends extraction and initial turbulent mixing. At T = 58°C, the equilibrium IFT reaches 1–2 dyne/cm when P ≥ 13.362 MPa, and only partial miscibility is achieved even up to P = 28.310 MPa. Thus, this experimental study shows that only partial miscibility can be obtained in most CO2 flooding reservoirs. In addition, it is expected that the observed light-ends extraction and initial turbulent mixing phenomena may have significant effects on ultimate oil recovery and long-term CO2 sequestration.  相似文献   

12.
以沙一下区块油藏为对象,研究了CO2混相驱技术可行性及提高采收率,通过PVT实验和细管模拟实验,确定了油藏原油的最小混相压力为18.41 MPa,原油采收率达90.01%。实验结果表明,注气驱达到混相压力后,注入压力对驱油效率影响不大,而在混相压力以下的近混相区,注入压力对驱油效率影响非常大。通过长岩心驱替模拟实验,对比了水驱和CO2驱替效率,结果表明CO2混相驱提高采收率达40.8%。  相似文献   

13.
利用常规方法测量超低渗透油藏CO2-原油最小混相压力时,存在测量周期长、工作量大等问题,且不能直接观察到CO2与原油的混相状态。为了确定杏河超低渗透油藏CO2-原油的最小混相压力,采用界面张力法对杏河油藏CO2和原油进行室内实验。结果表明:随着平衡压力的升高,原油中溶解CO2的量增多, CO2-原油之间界面张力的变化可分为2个阶段,且均呈逐渐减小的线性关系;当平衡压力从4 MPa增大到28 MPa时, CO2-原油之间的界面张力由17.72 mN/m降到1.56 mN/m。界面张力法测得杏河油藏最小混相压力值为22.5 MPa,略大于细管实验测得的最小混相压力值22.3 MPa,由于二者数值相差仅0.9%,表明界面张力法测量超低渗透油藏最小混相压力具有较好的准确性。通过上述研究,确定了杏河油藏最小混相压力,为杏河油藏注CO2增产开发方案的制定提供了理论支持,但是由于最小混相压力高于油藏目前压力(17.5 MPa),在目前油藏条件下CO2与原油不能实现混相。  相似文献   

14.
The authors present a new empirically derived correlation for estimating the minimum miscibility pressure (MMP) required for multicontact miscible (MCM) displacement of reservoir petroleum by hydrocarbon gas flooding. Only few empirical correlations exist for determining the MMP. These correlations are often used to estimate the MMP without considering the composition of the injected gas. On the other hand these correlations are based on a limited set of experimental data, which are not quite applicable. In addition, in such correlations the complex condensing/vaporizing displacement process is not regarded. In this study, however, the derived correlation investigates the influence of the vaporizing/condensing drive mechanism and oil and gas composition on gas miscibility pressure. MMP has been correlated with temperature, oil composition, and injection gas composition. Their effect on hydrocarbon gas MMP has been documented by using sensitivity analysis by slim tube experimental data. The new correlation is based on regression of widely experimentally measured MMP data in literature and data derived from slim tube experiment in this study. By comparing the calculated MMPs from the improved correlation data with currently used correlations and experimentally measured data, it was found that the new correlation is significantly more accurate than other correlations.  相似文献   

15.
详细地叙述了混相驱提高原油采收率室内实验研究所进行的压力-组分实验、细管实验和长岩心驱替实验。通过室内试验筛选了注入溶剂,确定了在一定实验条件下注入溶剂与地层原油形成混相的最小混相压力小混相富化量,获得了注入溶剂在岩心驱替过程中的驱油效率和动态特征等方面的重要成果。  相似文献   

16.
二氧化碳—原油多相多组分渗流机理研究   总被引:7,自引:3,他引:4  
沈平平  黄磊 《石油学报》2009,30(2):247-251
二氧化碳与烃类体系的多相多组分渗流机理,对于深入理解实际油田注二氧化碳的驱替特征、提高采收率及地质埋存等都具有非常重要的意义。应用细管和多次接触实验以及包含相间传质的多相多组分CO2驱油藏数值模拟模型,系统研究了CO2—原油体系的相变规律以及多组分体系的变相态渗流特征。结果表明,,CO2能够大量蒸发C11以下的烃组分,甚至能够蒸发C32等重烃组分;CO2气驱过程是一个蒸发与凝析的混合过程, 混相带出现在气驱前缘附近;温度越高,CH4和N2含量越大,最小混相压力越大。  相似文献   

17.
Abstract

This work concerns observing the pressure as well as CO2 mole percentage effects on asphaltene molecular weight distributions at reservoir conditions. A high-pressure, high-temperature asphaltene measurement setup was applied, and the amount of precipitated asphaltene at different pressures as well as CO2 mole percentage in an Iranian heavy crude oil was measured. Moreover, the asphaltene molecular weight distributions during titration of crude oil with different n-alkanes were investigated. The gel permeation chromatography (GPC) apparatus was used for characterization of asphaltene molecular weight under different conditions. It has been observed that some thermodynamic changes such as pressure depletion above the bubble point increase the average molecular weight of asphaltene and cause the asphaltene molecular weight distributions changes from a bimodal curve with two maxima to a single maxima curve. One the other hand, below the bubble point, pressure reduction causes a decrease in the average molecular weight of asphaltene and also causes the shape of asphaltene molecular weight distributions to restore, which might be due to dissolution of asphaltene aggregates. An interesting result is that asphaltene molecular weight distribution at the final step of pressure reduction tests, ambient condition, shows approximately the same trend as the distribution of asphaltene molecular weight obtained at reservoir condition. This behavior explains the reversibility of the asphaltene precipitation process under pressure depletion conditions. In the case of CO2 injection, the graphs of asphaltene molecular weight distributions always show a single modal trend and shift toward larger molecular weight values when CO2 mole percentage increases. The results of this work can be imported to thermodynamic models that use polydisperse data of heavy organic fractions to enhance their performance at reservoir conditions. The distributions obtained by this method are good indicators of asphaltene structures at reservoir conditions.  相似文献   

18.
不同油藏压力下CO2驱最小混相压力实验研究   总被引:1,自引:0,他引:1  
CO2-原油体系的最小混相压力是影响CO2驱开发效果的关键因素。随油藏开发阶段的不断深入,当油藏压力低于原始饱和压力后,溶解在原油中的溶解气会部分脱出。油藏流体组分及其高压物性也会发生变化,影响CO2-原油体系的最小混相压力,利用原始地层流体样品测试得到的最小混相压力不再适用。为此,以中国西部某油田8个典型区块为例,进行细管实验测试和多组分数值模拟,对不同油藏压力下的最小混相压力进行系统研究。与其他油田相比,研究区各油藏油样的C1摩尔含量较高,为31.12%~51.69%,平均为43.25%;C2-C6摩尔含量较低,为8.0%~18.48%,平均仅为11.3%。细管实验和数值模拟结果表明,在原始地层压力下,CO2均与8个典型区块地层原油样品发生混相驱替,但不同区块CO2驱最小混相压力差异很大,其值为17.60~41.18 MPa。当油藏压力低于原始饱和压力后,CO2驱最小混相压力主要呈微小幅度下降的趋势。随脱气压力进一步降低,油相组分构成中,C1N2摩尔含量呈递减趋势、C7+和C24+组分呈递增趋势,而中间组分(C2和C3+)摩尔含量变化较小。在各级脱气压力下,脱出气体以C1为主,中间组分摩尔含量仅在最后一级脱气压力下急剧升高。CO2-原油混相带出现在注入CO2波及前缘靠近注入端的位置,混相带随着驱替的进行而逐渐变宽。  相似文献   

19.
Carbon dioxide (CO2) flooding is one of the most important methods for enhanced oil recovery (EOR) because it not only increases oil recovery efficiency but also causes a reduction of greenhouse gas emissions. It is a very complex system, involving phase behavior that could increase the recovery of oil by means of swelling, evaporation and decreasing viscosity of the oil. In this study, a reservoir modeling approach was used to evaluate immiscible and miscible CO2 flooding in a fractured oil field. To reduce simulation time, we grouped fluid components into 10 pseudo-components. The 3-parameter, Peng–Robinson Equation of State (EOS) was used to match PVT experimental data by using the PVTi software. A one-dimensional slim-tube model was defined using ECLIPSE 300 software to determine the minimum miscibility pressure (MMP) for injection of CO2. We used FloGrid software for making a reservoir static model and the reservoir model was calibrated using manual and assisted history matching methods. Then various scenarios of natural depletion, immiscible and miscible CO2 injection have been simulated by ECLIPSE 300 software and then the simulation results of scenarios have been compared. Investigation of simulation results shows that the oil recovery factor in miscible CO2 injection scenario is more than other methods.  相似文献   

20.
During CO2 flooding, the crude oil is treated with CO2, and meanwhile it is displaced by CO2. Based on the two processes, the influence of pressure and CO2 content on the asphaltene precipitation and oil recovery efficiency are systematically investigated by indoor simulation experiment. With the increase of the pressure or CO2 content during CO2 treatment, the amount of asphaltene precipitation can be increased to a certain value. Correspondingly, the degrees of the changes of oil-water interface, the compositions of crude oil, and reservoir permeability are positively correlated with the amount of asphaltene precipitation. However, during the process, the oil recovery has an optimal value due to the combined action of asphaltene precipitation and the improvement of flow performance of the crude oil. These conclusions can provide a basis for high efficiency development of low permeability oil reservoirs by CO2 flooding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号