首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 875 毫秒
1.
激光清洗硅片表面Al2O3颗粒的试验和理论分析   总被引:2,自引:5,他引:2  
以KrF准分子激光器为激光源,对目前工业上常用的硅片研磨抛光液的主要成分Al2O3颗粒进行激光清洗的试验和理论分析。建立一维热传导模型,利用有限元分析软件MSC.MarC模拟硅片表面的温度随激光作用时间和能量密度的分布。通过理论计算,量化了颗粒所受到的清洗力以及其与硅片表面之间的粘附力,理论预测出1 μm Al2O3颗粒的激光清洗阈值为60 mJ/cm2。在理论分析的指导下,利用248 nm、30 ns的KrF准分子激光进行单因素试验,研究激光能量密度、脉冲个数、激光束入射角度对激光干法清洗效率的影响,并且实验验证了清洗模型以及场增强效应对激光清洗结果的影响。  相似文献   

2.
The silane coupling agent γ-aminopropyl triethoxysilane (APTS) and polyethylene oxide (PEO) are proposed to modify the SiO2 abrasive particles for final polishing of silicon wafers. The effects of the modified silica abrasive particles on nanosized particle deposition, roughness, and removal rate of the silicon wafer are explored in detail. PEO is proved to be a potential modifying agent for controlling deposition of large particles (~410 nm diameter), leading to low roughness (Ra = 0.097 nm), and APTS is found to be effective in controlling deposition of both large and small particles (~410 and ~200 nm diameter, respectively), resulting in lower roughness (Ra = 0.054 nm).  相似文献   

3.
Different laser heat inputs were applied on the gray-colored acrylonitrile butadiene styrene (ABS) plastic using fixed laser power and variable scanning speeds to join ABS- and polycarbonate (PC)-based polymers. Experiments with a laser power between 6 and 8 W and a scanning speed of 1,500, 3,000, and 4,500 mm/min were used for the joining. Heat-affected zone (HAZ) and melt zone measurements were performed to find the joining energy threshold, and the mechanical properties of welds were evaluated. At the low scanning speed, the total heat input at the given area resulted in carbonization damage on the surface. However, energy distributed laser beam joining process by galvanometers resulted in secure and sound weld joining quality. Damage threshold was calculated as 127 J/cm2 with relatively less sensitivity of scanning speed. However, the ablation threshold was measured to be 215, 281, and 424 J/cm2 for the scanning speed of 4,500, 3,000 and 1,500 mm/min, respectively.  相似文献   

4.
Surface integrity of silicon wafers in ultra precision machining   总被引:1,自引:1,他引:1  
Silicon wafers are the most extensively used material for integrated circuit (IC) substrates. Before taking the form of a wafer, a single crystal silicon ingot must go through a series of machining processes, including slicing, lapping, surface grinding, edge profiling, and polishing. A key requirement of the processes is to produce extremely flat surfaces on work pieces up to 350 mm in diameter. A total thickness variation (TTV) of less than 15 μm is strictly demanded by the industry for an 0.18 μm IC process. Furthermore, the surfaces should be smooth (Ra<10 nm) and have minimum subsurface damage (<10 μm) before the final etching and polishing. The end product should have crack-free mirror surfaces with a micro-roughness less than 1.8 Å. In this paper, experiments are conducted to investigate the effects of various parameters on the subsurface damage of ground silicon wafers.  相似文献   

5.
Carbon ions with different doses of 2×1015 and 2×1016 ions/cm2 were implanted into single crystal silicon wafers under an energy level of 80 keV. The nanohardness and elastic modulus of silicon wafers were studied on the nano-mechanical testing system. The fretting wear tests were performed on the UMT-2 Micro-tribometer to evaluate the fretting wear resistance of C+ implanted silicon wafer and to investigate its micro-tribological properties. The results demonstrate that the nanohardness and elastic modulus of silicon wafer with dose of 2×1015 ions/cm2 decreased and those of 2×1016 ions/cm2 changed little. Implanted silicon wafer with dose of 2×1016 ions/cm2 had much lower coefficient of friction and wear volume under low loads, which suggests a significant effect of friction-reducing and anti-wear. The results also indicate that abrasive wear was the main wear mechanism for both virgin silicon and C+ implanted silicon with dose of 2×1015 ions/cm2. However, adhesive wear played a significant role in the wear mechanism of the C+ implanted silicon with dose of 2×1016 ions/cm2 under the low loads, while the abrasive wear dominated the wear mechanism under high loads.  相似文献   

6.
We demonstrate the manufacture of organized microstructures on titanium substrates in an air atmosphere utilizing a pulsed Nd:YVO4 laser with pulse length of 8 ns and repetition rate of 30 kHz at 1064 nm. The ablation threshold of titanium for irradiation at this wavelength was measured to be in the range of 1.7–1.8 J/cm2. For structuring of the metal, we used maximum laser energy fluence above the ablation threshold. This led to the generation of arrays of organized microstructures with average periods ranging from ~40 to ~90 μm. The mechanism for formation of the microstructures is discussed. Formation of such organized structures on titanium could find applications in sensing and biocompatibility.  相似文献   

7.
In this study, the performance of Si wafer machining by employing the die-sinking microelectrical discharge machining technique is reported. Specifically, the machining performance was examined on both high- (1–10 Ω cm) and low-resistivity (0.001–0.005 Ω cm) Si wafers by means of using a range of discharge energies. In this regard, the machining time, material removal rate, surface quality, surface roughness, and material mapping, which are categorized among the important properties in micromachining, have been investigated. In order to analyze the surface properties and to perform the elemental analysis, the scanning electron microscope and energy-dispersive X-ray spectroscopy were used. In contrast, the 3D surface profiler was used to evaluate the roughness of machined surface. The results of this experimental study revealed that the electrical resistivity and discharge energy parameter of microelectrical discharge machining had a great influence on the Si wafer machining performances. The observations in this study indicated a decrease in machining time, high material removal rate, and high surface roughness with an increased discharge energy values. Overall, it was learnt that the minimum amount of energy required to machine Si wafer was 5 μJ for both low and high-resistivity Si. In addition, the highest material removal of 5.842 × 10?5 mm3/s was observed for low-resistivity Si. On the contrary, the best surface roughness, R a, of 0.6203 μm was achieved for high-resistivity Si and it also pointed to a higher carbon percentage after the machining process.  相似文献   

8.
Sixty samples of human dentin were divided into six groups (n = 10) and were irradiated with Er:YAG laser at 100 mJ–19.9 J/cm2, 150 mJ–29.8 J/cm2, 100 mJ–35.3 J/cm2, 150 mJ–53.0 J/cm2, 200 mJ–70.7 J/cm2, and 250 mJ–88.5 J/cm2, respectively, at 7 Hz under a water spray. The atomic percentages of carbon, oxygen, magnesium, calcium, and phosphorus and the Ca‐to‐P molar ratio on the dentin were determined by energy dispersive X‐ray spectroscopy. The morphological changes were observed using scanning electron microscopy. A paired t‐test was used in statistical analysis before and after irradiation, and a one‐way ANOVA was performed (P ≤ 0.05). The atomic percent of C tended to decrease in all of the groups after irradiation with statistically significant differences, O and Mg increased with significant differences in all of the groups, and the Ca‐to‐P molar ratio increased in groups IV, V, and VI, with statistically significant differences between groups II and VI. All the irradiated samples showed morphological changes. Major changes in the chemical composition of dentin were observed in trace elements. A significant increase in the Ca‐to‐P ratio was observed in the higher energy density groups. Morphological changes included loss of smear layer with exposed dentinal tubules. The changes produced by the different energy densities employed could have clinical implications, additional studies are required to clarify them. Microsc. Res. Tech. 78:1019–1025, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

9.

We propose a method of cleaving silicon wafers using two-line laser beams. The base principle is separating the silicon wafer using crack propagation caused by laser-induced thermal stress. Specifically, this method uses two-line laser beams parallel to the cutting line such that the movements of the laser beam along the cutting line can be omitted, which is necessary when using a point beam. To demonstrate the proposed method, 3D numerical analysis of a heat transfer and thermo-elasticity model was performed. Crack propagation was evaluated by comparing the stress intensity factor (SIF) at the crack tip with the fracture toughness of silicon, where crack propagation is assumed begin when the SIF exceeds the fracture toughness. The influences of laser power, line beam width, and distance between two laser beams were also investigated. The simulation results showed that the proposed method is appropriate for cleaving silicon wafers without any thermal damage.

  相似文献   

10.
介绍了一种基于Matlab图像处理工具箱技术的评价硅片表面污染颗粒激光清洗率的新方法。借助Matlab图像处理工具箱,对清洗前后硅片表面光学显微镜照片进行处理,编写硅片表面激光干法清洗率的评价程序,统计清洗前后硅片表面评价区域的污染颗粒个数,对清洗效果进行定量评价。研究结果证明,利用此方法统计的颗粒数准确度达97.6%,得到的激光清洗率准确度达99.2%。结果表明,借助图像处理技术评定清洗效果是一种高效、快速、准确的新方法。  相似文献   

11.
Chemo-mechanical-grinding (CMG) is a hybrid process which integrates chemical reaction and mechanical grinding between abrasives and workpiece into one process. It has been successfully applied into manufacturing process of silicon wafers where both geometric accuracy and surface quality are required. This paper aims to study the potential of CMG process in manufacturing process of single crystal sapphire wafers. The basic material removal mechanism in terms of chemical effect and mechanical effect in CMG process has been analysed based on experiment results of two different kinds of CMG wheels. The experiment results suggest that chromium oxide (Cr2O3) performs better than silica (SiO2) in both material removal rate (MRR) and surface quality. It also reveals that, no matter under dry condition or wet condition, CMG is with potential to achieve excellent surface quality and impressive geometric accuracy of sapphire wafer. Meanwhile, test result by Raman spectrum shows that, by using Cr2O3 as abrasive, the sub-surface damage of sapphire wafer is hardly to be detected. Transmission electron microscopy (TEM) tells that the sub-surface damage, about less than 50 nm, might remain on the top surface if chemical effect is not sufficient enough to meet the balance with mechanical effect in CMG process.  相似文献   

12.
光纤激光诱导背面干法刻蚀制备二元衍射光学元件   总被引:1,自引:1,他引:0  
为了降低激光直接辐照透明介电材料的表面加工粗糙度和激光能量密度刻蚀阈值,提高微光学元件的产出率,介绍了一种用固体介质作吸收层,激光直接作用在透明光学材料上进行微纳加工的激光诱导背面干法刻蚀工艺。首先,选用95氧化铝陶瓷作固体材料辅助吸收层,应用中心波长为1 064 nm的掺镱光纤激光器,在3.2 mm厚的熔融石英玻璃表面刻蚀了亚微米尺度的二维周期性光栅结构。然后,对刻蚀参数进行拟合并探讨了激光能量密度对刻蚀参数的影响。最后,观察该二元光学元件的衍射花样图形并讨论其衍射特性。实验制备了槽深为4.2 μm,槽底均方根粗糙度小于40 nm,光栅常数为25 μm的二维微透射光栅,其刻蚀阈值低于7.66 J/cm2。结果表明,应用该工艺制备二维透射光栅,降低了激光刻蚀透明材料的密度阈值及加工结构的表面粗糙度。  相似文献   

13.
For stacking wafers/dies, through-silicon-vias (TSVs) need to be created for electrical connection of each wafer/die, which enables better electrical characteristics and less footprints. And for via hole processing, chemical methods such as DRIE (Deep Reactive Ion Etching) are mostly used. These methods suffer the problems of slow processing speed, being environment-unfriendly and damage on the existing electric circuits due to high process temperature. Furthermore, masks are also needed. To find an alternative to the methods, researches on the laser drilling of via holes on silicon wafer are being conducted. This paper investigates the silicon via hole drilling process using laser beam. The percussion drilling method is used for this investigation. It is also examined how the laser parameters- laser power, pulse frequency, the number of laser pulses and the diameter of laser beam- have an influence on the drilling depth, the hole diameter and the quality of via holes. From these results, laser drilling process is optimized. The via hole made by UV laser on the crystal silicon wafer is 100μm deep, has the diameter of 27.2μm on the top, 12.9μm at the bottom. These diameters deviate from the target values by 2.8μm and 0.4μm respectively. These values correspond to the deviation from the target taper angle of the via hole by less than 1°. The processing speed of the laser via hole drilling is 114mm/sec, therefore, etching process can be replaced by this method, if the number of via holes on a wafer is smaller than 470,588. The ablation threshold fluence of silicon is also determined by a FEM model and is verified by experiment.  相似文献   

14.
Polycrystalline silicon wafers are widely used in Photovoltaic (PV) industry as a base material for the solar cells. The existing silicon ingot slicing methods typically provide minimum wafer thickness of 300–350 μm and a surface finish of 3–5 μm Ra while incurring considerable kerf loss of 35–40%. Consequently, efficient dicing methods need to be developed, and in the quest for developing new processes for silicon ingot slicing, the wire-EDM (electric discharge machining) is emerging as a potential process. Slicing of a 3′′ square silicon ingot into wafers of 500 μm in thickness has been performed to study the process capability. This article analyzes the effect of processing parameters on the cutting process. The objective of the experimental study is improvement in slicing speed, minimization of kerf loss and surface roughness. A central composite design-based response surface methodology (RSM) has been used to study the slicing of polycrystalline silicon ingot via wire-EDM. A zinc-coated brass wire, 100 μm in diameter, has been used as an electrode in the slicing experiments. It has been observed that the optimal selection of the process parameters results in an increase of 40–50% in the slicing rate along with a 20% reduction in the kerf loss as compared to the conventional methods. The machined surfaces on the sliced wafer were free of micro-cracks and wire material contamination, thereby making it useful for electronic applications.  相似文献   

15.
A nanosecond pulsed Nd:YVO4 laser was irradiated on a boron-doped single-crystal silicon wafer after rough and fine grinding processes to recover the grinding-induced subsurface damages. The surface topography of samples was investigated by using a white-light interferometer, a scanning electron microscope, and an atomic force microscope; while the crystallinity was analyzed by a laser micro-Raman spectrometer. It was found that surface nanostructures were generated by the Mullins-Sekerka instability, which remained on the surface under recoil pressure and surface tension. The rough grinding-induced deep subsurface damages influenced the interface instability between liquid and solid silicon during recrystallization process. By increasing pulse width and decreasing laser peak irradiance, the subsurface damage was recovered and a flat surface with surface roughness of ~1 nm Sa was obtained. This study reveals important correlations among grinding-induced latent subsurface defects, laser peak irradiance and nanoscale surface topography formation in laser recovery, which contributes to high quality silicon wafer manufacturing.  相似文献   

16.
The strain-induced ε/α′ martensitic transformation behavior and resistance to solid particle erosion was investigated for austenitic Fe-12Cr-0.4C-xMn/Ni (x = 5, 7, and 10 wt%) alloys. The γ → α′ chemical driving force decreased with increasing Mn and Ni. The SFE values of 5Ni, 7Ni, and 10Ni alloys were 31.2, 41.5, and 45.8 mJ/m2, respectively. Because Ni increased the SFE, γ → α′ phase transformation was suppressed in Fe-12Cr-0.4C-Ni alloys. The SFE values for 5Mn, 7Mn, and 10Mn alloys were 19.4, 16.6, and 10.5 mJ/m2, respectively. Although Mn decreased the SFE, the fraction of transformed α′ decreased with increasing Mn concentrations due to γ → ε phase transformation and decreasing γ → α′ chemical driving force of higher Mn alloys. The solid particle erosion resistance was better in the phase transformable alloys than the non-phase transformed alloys. In particular, γ → α′ phase transformable alloys had better resistance to solid particle erosion than γ → ε phase transformable alloys.  相似文献   

17.
Several scientific reports have shown the effects of Er:YAG laser irradiation on enamel morphology. However, there is lack of information regarding the morphological alterations produced by the acid attack on the irradiated surfaces. The aim of this study was to evaluate the morphological changes produced by acid dissolution in Er:YAG laser irradiated dental enamel. Forty‐eight enamel samples were divided into four groups (n = 12). GI (control); Groups II, III, and IV were irradiated with Er:YAG at 100 mJ (12.7 J/cm2), 200 mJ (25.5 J/cm2), and 300 mJ (38.2 J/cm2), respectively, at 10 Hz without water irrigation. Enamel morphology was evaluated before‐irradiation, after‐irradiation, and after‐acid dissolution, by scanning electron microscopy (SEM). Sample coating was avoided and SEM analysis was performed in a low‐vacuum mode. To facilitate the location of the assessment area, a reference point was marked. Morphological changes produced by acid dissolution of irradiated enamel were observed, specifically on laser‐induced undesired effects. These morphological changes were from mild to severe, depending on the presence of after‐irradiation undesired effects. Microsc. Res. Tech. 77:410–414, 2014. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
In an attempt to improve the mechanical and thermal resilient properties of mild steel, Zn-ZrO2-SiC composite coating was fabricated from zinc-based sulphate electrolyte with incorporated composite particles of ZrO2/SiC at 2.0 A/cm2 for 10 min. The effects of particle on the mechanical properties were examined using scanning electron microscope attached with energy dispersion spectroscopy and atomic force microscopy. The micro-hardness and wear resistance behaviour were determined with high diamond micro-hardness tester and three body abrasive MTR-300 testers with dry sand rubber wheel apparatus with 5 N. The fabricated coating was thermally heated at 200 °C for 4 h to evaluate the coating stability. From the results, a modification in the microstructure and topographic orientation as a result of incorporated composite was noticed on the zinc matrix. The mechanical and thermal properties were observed to be considerably improved by the incorporation of the ZrO2/SiC weight fraction. A significant improvement in wear and hardness properties were also obtained for the multiphase embedded coatings.  相似文献   

19.
This study investigates warping of silicon wafers in ultra-precision grinding-based back-thinning process. By analyzing the interactions between the wafer and the vacuum chuck, together with the machining stress distributions in damage layer of ground wafer, the study establishes a mathematical model to describe wafer warping during the thinning process using the elasticity theory. The model correlates wafer warping with machining stresses, wafer final thickness, damage layer thickness, and the mechanical properties of the monocrystalline silicon. The maximum warp and the warp profile are measured on the wafers thinned to various thicknesses under different grinding conditions, and are used to verify the modeling results.  相似文献   

20.
The use of Er:YAG laser for cavity preparation: an SEM evaluation   总被引:1,自引:0,他引:1  
OBJECTIVE: The purpose of this study was to evaluate morphological changes in cavities prepared by the Er:YAG laser (2.94 mum) at different parameters of irradiation and by a diamond bur. EXPERIMENTAL DESIGN: Cavities were prepared on 27 human molars (n = 3): G1, 15 Hz/160 mJ enamel/6 Hz/200 mJ dentin; G2, 15 Hz/180 mJ enamel/6 Hz/200 mJ dentin; G3, 15 Hz/160 mJ enamel/6 Hz/250 mJ dentin; G4, 15 Hz/180 mJ enamel/6 Hz/250 mJ dentin; G5, 15 Hz/180 mJ enamel/10 Hz/180 mJ dentin; G6, 15 Hz/160 mJ enamel/10 Hz/180 mJ dentin; G7, 15 Hz/160 mJ enamel/10 Hz/160 mJ dentin; G8, 15 Hz/180 mJ enamel/10 Hz/160 mJ dentin; G9, diamond bur. For SEM analysis, samples were fixed (2.5% glutaraldheyde, 12 h, 4 degrees C), dehydrated (25-100% ethanol), dried, and sputter-coated with gold. RESULTS: Despite the changes on energy and repetition-rate settings, all laser-treated samples showed no evidence of thermal damage or signs of burning and melting. Er:YAG laser ablated dental hard tissues showed exposed enamel prisms, dentin surface without smear layer, and opened dentinal tubules. CONCLUSION: Different Er:YAG laser parameters were effective for ablation of hard tissues, creating an irregular and microretentive morphological pattern without hard tissue damage.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号