首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到7条相似文献,搜索用时 0 毫秒
1.
Abrasive flow machining (AFM) is one of the important non-traditional metal finishing technologies which was introduced during the late 1960s. The process has found applications in a wide range of fields such as aerospace, defence, surgical and tool manufacturing industries. Recently, an effort has been made towards the performance improvement of this process by applying centrifugal force on the abrasive media with the use of a rotating centrifugal force generating (CFG) rod introduced in the workpiece passage. The results have been encouraging. The present paper discusses the results of changing the parameters like shape and rotational speed of CFG rod, extrusion pressure, number of process cycles and abrasive grit size. The results indicate that all the input variables have significant effect on the response parameters, which for the present study were taken as material removal and surface roughness. An analytical model is proposed for the velocity and the angle at which abrasive particles attack the workpiece surface in the process.  相似文献   

2.
ABRASIVE MACHINING OF GLASS-CERAMICS WITH A DENTAL HANDPIECE   总被引:1,自引:0,他引:1  
Dental restorations are commonly prepared from machinable glass-ceramics using modern dental CAD/CAM systems. Unfortunately, little is understood about the influence of machining parameters on material removal rates and any damage which could be introduced into the restoration during the abrasive machining processes employed with these systems. These effects are investigated for three experimental machinable glass-ceramics with varying microstructure and one closely related commercial material. Abrasive machining is performed with dental burs containing coarse and fine diamond particles. The results show that the microstructure of the glass-ceramic, the size of diamond grit in the burs, and the load applied to the burs during machining have significant effects on the machining behavior. By increasing the size of the mica platelets within the glass-ceramics or by increasing the load on the burs, material removal rate increases. However, chipping damage at groove edges increases as either the load is increased or as the size of the mica platelets is decreased. The use of coarse burs does not necessarily result in high material removal rates but increases the extent of chipping damage. Surface roughness is found to be relatively independent of the microstructure or applied load but is strongly dependent upon coarseness of the diamond particles in the burs.  相似文献   

3.
The abrasive machining characteristics of a glass-infiltrated alumina used for fabrication of all-ceramic dental crowns were investigated using a high-speed dental handpiece and diamond burs with different grit sizes. The material removal rate, surface roughness, and extent of edge chipping were measured as a function of grit size. The removal rate decreased substantially with decreasing bur grit size from supercoarse (180 μm) to fine (40 μm) and ultrafine (10 μm). The removal rate with the supercoarse burs was approximately twice that achieved with the fine burs and four times the removal rate with the ultrafine burs. Both surface roughness and edge chipping damage were sensitive to diamond grit size. Chipping damage was severe and the surface roughness substantial with the supercoarse burs, while negligible edge chipping and smooth surfaces were obtained with the ultrafine burs. The removal rate also decreased with continued machining for all grit sizes. The observed reduction in removal rate was found to be primarily due to wear of the diamond grit and accumulation of debris on the bur (i.e., bur loading). After prolonged use, a significant loss of diamond grit was observed that led to a substantial loss of cutting efficiency. It is concluded that, with respect to material removal rate and surface integrity, diamond machining is a feasible machining process for glass-infiltrated alumina in the final infiltrated state. However, caution should be exercised in the use of diamond grit larger than 40 μm. Such burs may result in excessively rough surfaces, chipped edges, and strength limiting surface and subsurface microcracks.  相似文献   

4.
Lapping is a widely used surface finishing process for ceramics. An experimental investigation is conducted into the lapping of alumina, Ni−Zn ferrite and sodium silicate glass using SiC abrasive to study the effect of process parameters, such as abrasive particle size, lapping pressure, and abrasive concentration, on the surface roughness and material removal rate during lapping. A simple model is developed based on the indentation fracture and abrasive particle distribution in the slurry to explain various aspects of the lapping process. The model provides predictions for the surface roughness,R a andR t , on the machined surface and rough estimation for the material removal rate during lapping. Comparison of the predictions with the experimental measurements reveals same order of magnitude accuracy.  相似文献   

5.
Magnetic abrasive finishing (MAF) uses magnetic force of very low magnitude applied on ferromagnetic abrasive particles to obtain very high level surface finish. The process has been investigated extensively in the finishing of cylindrical surfaces. This paper reports an experimental work on the analysis of surface roughness and material removal using response surface method in the MAF of plane surfaces. The surface finish was found to improve significantly with an increase in the grain size, relative size of abrasive particles vis-à-vis the iron particles, feed rate and current. The optimum parameter levels which gave better surface finish and the higher material removal were also obtained from this experimentation.  相似文献   

6.
利用自行设计的试验装置,改善了磁力刷的研磨轨迹。结果表明:改善磁力刷研磨轨迹后,不仅可以减小表面粗糙度值、提高平面精度,还改善了研磨截面微观形状均匀性。另外,可通过采取理论分析的方法对研磨效果进行预测。  相似文献   

7.
Titanium and its alloys are finding prime applications in industries due to their unique properties. However, the high cost of machining is one of the limiting factors for their widespread use. Tremendous efforts are being made to improve the existing machining processes, and new processes are being developed to reduce the machining cost in order to increase the titanium market. However, there is no report on the systematic study of the effects of machining variables on output parameters in rotary ultrasonic machining of titanium and its alloys. This paper presents an experimental study on rotary ultrasonic machining of a titanium alloy. The cutting force, material removal rate, and surface roughness (when using rotary ultrasonic machining) of a titanium alloy have been investigated using different machining variables.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号