首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到3条相似文献,搜索用时 0 毫秒
1.
The impact of endocrine-disrupting chemicals on the development and involution of the immune system is a possible reason for the increased incidence of disorders associated with inappropriate immune function. The thymus is a lymphoid and also an endocrine organ, and, accordingly, its development and functioning may be impaired by endocrine disruptors. The aim was to evaluate age-related thymus involution in mature rats exposed to the endocrine disruptor DDT during prenatal and postnatal ontogeny. Methodology included in vivo experiment on male Wistar rats exposed to low doses of DDT during prenatal and postnatal development and morphological assessment of thymic involution, including the immunohistochemical detection of proliferating thymocytes. The study was carried out at the early stage of involution. Results: DDT-exposed rats exhibited a normal anatomy, and the relative weight of the thymus was within the control ranges. Histological and immunohistochemical examinations revealed increased cellularity of the cortex and the medulla, higher content of lymphoblasts, and more intensive proliferation rate of thymocytes compared to the control. Evaluation of thymic epithelial cells revealed a higher rate of thymic corpuscles formation. Conclusion: The data obtained indicate that endocrine disrupter DDT disturbs postnatal development of the thymus. Low-dose exposure to DDT during ontogeny does not suppress growth rate but violates the developmental program of the thymus by slowing down the onset of age-related involution and maintaining high cell proliferation rate. It may result in excessive formation of thymus-dependent areas in peripheral lymphoid organs and altered immune response.  相似文献   

2.
3.
Dichlorodiphenyltrichloroethane (DDT) is the most widespread, persistent pollutant and endocrine disruptor on the planet. Although DDT has been found to block androgen receptors, the effects of its low-dose exposure in different periods of ontogeny on the male reproductive system remain unclear. We evaluate sex steroid hormone production in the pubertal period and after maturation in male Wistar rats exposed to low doses of o,p’-DDT, either during prenatal and postnatal development or postnatal development alone. Prenatally and postnatally exposed rats exhibit lower testosterone production and increased estradiol and estriol serum levels after maturation, associated with the delayed growth of gonads. Postnatally exposed rats demonstrate accelerated growth of gonads and higher testosterone production in the pubertal period. In contrast to the previous group, they do not present raised estradiol production. All of the exposed animals exhibit a reduced conversion of progesterone to 17OH-progesterone after sexual maturation, which indicates putative attenuation of sex steroid production. Thus, the study reveals age-dependent outcomes of low-dose exposure to DDT. Prenatal onset of exposure results in the later onset of androgen production and the enhanced conversion of androgens to estrogens after puberty, while postnatal exposure induces the earlier onset of androgen secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号