首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
《Applied Clay Science》1987,2(3):273-289
The 9 GHz EPR spectra of Mn2+ impurity ions incorporated into the tactoid structure of hydrated Ca-montmorillonite has been investigated in the temperature interval 300–500 K. It has been found that a phase transition from a liquid to a liquid-crystal-like phase occurs near 373 K. The temperature of this transition depends on amount of free water in the clay tactoid structure. Zero-order or a0d0-Argand diagrammatic techniques (DISPA) have been used to study the lineshape before and after the phase transition. It is concluded that the EPR spectra below 373 K are due to Mn2+ ions absorbed into hexagonal silicate sheet cavities and Mn(H2O)2+6 complexes in free water and that the EPR spectra above 373 K are due to Mn(H2O)2+6 complexes in two- and three-layer hydrated montmorillonite and Mn2+ ions adsorbed inside the hexagonal cavities in the montmorillonite silicate sheets. This study has shown that irreversible processes occur when hydrated Ca-montmorillonite is heated to above 373 K. These processes may be of importance in the extraction of heavy oils and bitumen from tar sands by thermal treatment.  相似文献   

3.
《Ceramics International》2022,48(14):20096-20101
A series of Mn2+-doped Mg1-xMnxTa2O6 (x = 0.02, 0.04, 0.06, 0.08, 0.10, 0.12) ceramics were synthesized by solid-state reaction method. The influence of introducing Mn–O bonds as a partial replacement for Mg–O bonds on the lattice and microwave dielectric properties was systematically investigated. XRD and Rietveld refinement confirm that Mn2+ occupies the 2a Wyckoff position and forms a pure trirutile phase. Moreover, based on the chemical bond theory, the dielectric constant is mainly affected by the ionicity of the Ta–O bond. The lattice and dielectric properties remain relatively stable with Mn2+ doping below 0.1, but excessive Mn2+ doping leads to pronounced distortion of the lattice, which is not beneficial for lattice stability and microwave dielectric properties. Introducing an appropriate amount of Mn–O bonds with high bond dissociation energy facilitates MgO6 octahedron stability, which improves the thermal stability of the lattice. Accordingly, the microwave dielectric properties for 0.06 Mn2+-doped MgTa2O6 ceramics were determined: εr = 28, Q × f = 105,000 GHz (at 7.5 GHz), τf = 19.5 ppm/°C.  相似文献   

4.
5.
A single-phase and optimized pure white light emitting Dy3+-doped and Dy3+/Mn2+ codoped Na3Y(PO4)2 phosphors (NYPO) were synthesized by traditional solid state reaction process. The as-synthesized phosphors were characterized by X-ray diffraction, X-ray photoelectron spectroscopy (XPS), diffuse reflectance spectra and photoluminescence studies. The results suggested that the NYPO: Dy, Mn phosphors were crystallized in orthorhombic structures. The presence of dopants Dy and Mn was quantified by XPS analysis. All of the phosphors were effectively excited using a light of wavelength 351?nm and emissions in two regions, blue (~482?nm, 4F9/26H15/2) and yellow (~573?nm, 4F9/26H13/2), were obtained due to the f-f transitions of Dy3+ ions. The maximum intensities of Dy and Mn obtained were 0.07 and 0.05 for NYPO:Dy and NYPO:0.07Dy, Mn, respectively. The chromaticity coordinates, color temperatures, and color rendering indices of NYPO: 0.07Dy ((0.32, 0.33), 6194?K, and 48) and NYPO:0.07Dy, 0.05Mn phosphors ((0.33, 0.33), 5688?K, and 62) were determined. The energy transfer mechanism and oxygen vacancies that arise due to the introduction of Mn2+ ions in the NYPO:Dy phosphors, are responsible for the tuning of cool white light to pure day white light. The introduction of Mn in the Dy doped NYPO phosphor enhances the emission intensity in the phosphor.  相似文献   

6.
The interaction between MnO2 (I.C.S. No. 5), in the Na+ form and 54Mn2+-labelled solution at pH 6 involves: a rapid process assumed to be Na+/Mn2+ ion-exchange and a slower process assumed to involve the exchange between Mn2+ ions in solution and Mn ions in a surface phase. The activation parameters ΔH# and ΔS# were found to be 52 and 83 kJ mol?1 and ?130 and ?63 J mol?1 for the two processes respectively. Exposing the solid to a flux of moderated neutrons had no effect on the rate of the second process. The exchange of Mn ions from the solid to the solution was demonstrated using 56Mn-labelled solid and inactive Mn2+ solution. There was evidence of a still slower process.  相似文献   

7.
Pb0.325Sr0.675Ti1-xMnxO3 ceramics (x?=?0, 0.001, 0.005, 0.01, and 0.05) were successfully prepared by traditional solid-state reaction method. It was found that the lattice constant calculated through Rietveld refinement initially increased and then decreased with increasing Mn content, which was attributed to the variation in valence state of Mn and Ti ions. The microstructure gradually varied from the coexistence of large grains and fine grains for x?=?0 to the uniform grain for x?=?0.05 by increasing the doping Mn ions. With increasing Mn content from x?=?0 to x?=?0.05, the Curie temperature (Tc) dramatically decreased from 25?°C to ??40?°C and dielectric maximum decreased from 27,100 to 13,200. Pb0.325Sr0.675Ti1-xMnxO3 ceramics with x?=?0.001 showed the lowest dielectric loss of 0.006 with a relatively high dielectric peak value of ~ 21,000. The grain boundaries resistance obtained from the complex impedance decreased with the increase of Mn content. The decrease in resistance was ascribed to oxygen vacancies and electronics produced by the change of ionic valence state. X-ray photoemission spectroscopy revealed that Ti ions were Ti4+ and the valences of Mn ions were deduced to be mainly in the form of Mn2+ and/or Mn3+ for ceramics with low content of Mn, while the Ti ions were in the form of Ti3+ and Ti4+ and Mn ions were diverse valence states with the coexistence of Mn2+, Mn3+, and Mn4+ for ceramics with x?=?0.01 and 0.05.  相似文献   

8.
ATP binding cassette transporter A1 (ABCA1) plays a key role in atherogenesis. Hydrogen sulfide (H2S), a gasotransmitter, has been reported to play an anti-atherosclerotic role. However, the underlying mechanisms are largely unknown. In this study we examined whether and how H2S regulates ABCA1 expression. The effect of H2S on ABCA1 expression and lipid metabolism were assessed in vitro by cultured human hepatoma cell line HepG2, and in vivo by ApoE−/− mice with a high-cholesterol diet. NaHS (an exogenous H2S donor) treatment significantly increased the expression of ABCA1, ApoA1, and ApoA2 and ameliorated intracellular lipid accumulation in HepG2 cells. Depletion of the endogenous H2S generator cystathionine γ-lyase (CSE) by small RNA interference (siRNA) significantly decreased the expression of ABCA1 and resulted in the accumulation of lipids in HepG2 cells. In vivo NaHS treatment significantly reduced the serum levels of total cholesterol (TC), triglycerides (TG), and low-density lipoproteins (LDL), diminished atherosclerotic plaque size, and increased hepatic ABCA1 expression in fat-fed ApoE−/− mice. Further study revealed that NaHS upregulated ABCA1 expression by promoting peroxisome proliferator-activated receptor α (PPARα) nuclear translocation. H2S up-regulates the expression of ABCA1 by promoting the nuclear translocation of PPARα, providing a fundamental mechanism for the anti-atherogenic activity of H2S. H2S may be a promising potential drug candidate for the treatment of atherosclerosis.  相似文献   

9.
《Ceramics International》2022,48(11):15200-15206
In the designed (1-x)Mn3GaN-xMn3SbN (0.2 ≤ x ≤ 0.8) heterogeneous system, modulating the non-collinear antiferromagnetic (AFM) phase transitions of antiperovskite Mn3GaN using thermal stress is realized for the first time. With growing the Mn3SbN secondary phase, the Neel temperature (TN) of Mn3GaN phase shifts down by 40 K and then disappears, but another magnetic transition below TN appears and shifts up by 125 K. The neutron powder diffraction (NPD) results of the sample with x = 0.6 show that the magnetic transition below TN ascribed to the decreasing Mn–Mn distance (dMn–Mn) and spin re-orientation from Γ5g to a new non-collinear M2 AFM phase. By the NPD analysis, the dMn–Mn of the Mn3GaN phase decreases from 2.75527(4) Å to 2.73925(3) Å, and the angles of the spin rotations for Mn1/Mn2, Mn3-1, and Mn3-2 atoms in M2 AFM during the spin re-orientation process are 90°, 60°, and 60°, respectively. Negative thermal expansion behaviors and caloric effects associated with Γ5g phase transitions are investigated systematically. Further, the thermal stress could be regulated by adjusting the proportion of Mn3GaN and Mn3SbN phases with mismatched thermal expansion, which could be estimated even up to GPa according to Clausius–Clapeyron relation.  相似文献   

10.
The novel 18-metallacrown-6 metallamacrocycle, with the formula of [Mn6(amshz)6(CH3OH)6]·6H2O (amshz = N-acetyl-3-methyl-salicylhydrazide), has been prepared and characterized. Six Mn(III) ions and six deprotonated N-acetyl-3-methyl-salicylhydrazide (amshz3?) ligands construct a planar 18-membered ring based on Mn–N–N–Mn linkage. Due to the coordination, the ligand enforces the stereochemistry of the Mn3+ ions as a propeller shape with alternating …ΔΛΔΛ… configurations. The magnetic properties of the metallacrown molecules are characterized by a weak antiferromagnetic exchange interaction, with μeff = 5.12 μB at 300 K between the Mn3+ ion spins with S = 2 in the cyclic system.  相似文献   

11.
《Ceramics International》2022,48(13):18784-18792
Bulk Cr1-xMnxO2 samples are prepared by high pressure synthesis technology. The crystal structure, magnetic properties and electronic structure of the samples are investigated by experiments and theoretical calculation. The crystal structure of the samples are indexed to a rutile structure with space group P42/mnm. The lattice parameter a of the samples remains basically unchanged in accordance with Vegard's law, but the lattice parameter c decreases due to increasing Mn dopant content (x) as well as strong Metal–Metal bonding along the c-axis. The saturation magnetization of the Cr1-xMnxO2 samples decreases with an increase in x. According to XPS analysis, there is electron transfer between Mn and Cr in Cr1-xMnxO2. Mn exists as Mn2+ and Mn3+ions, and part of Cr is oxidized to Cr6+. Based on the XPS analysis, the magnetic moment of Cr1-xMnxO2 is calculated and its value is in accordance with the experimental data.  相似文献   

12.
Titanium dioxide (TiO2) and Mn-doped TiO2 (Mn(x)-TiO2) were synthesized in a sol-gel method and characterized by BET surface area analysis, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Gasphase elemental mercury (Hg0) oxidation and capture by the Mn-doped TiO2 catalyst was studied in the simulated flue gas in a fixed-bed reactor. The investigation of the influence of Mn loading, flue gas components (SO2, NO, O2, and H2O) showed that the Hg0 capture capability of Mn(x)-TiO2 was much higher than that of pure TiO2. The addition of Mn inhibits the grain growth of TiO2 and improves the porous structure parameters of Mn(x)-TiO2. Excellent Hg0 oxidation performance was observed with the catalyst with 10% of Mn loading ratio and 97% of Hg0 oxidation was achieved under the test condition (120 °C, N2/6%O2). The presence of O2 and NO had positive effect on the Hg0 removal efficiency, while mercury capture capacity was reduced in the presence of SO2 and H2O. XPS spectra results reveal that the mercury is mainly present in its oxidized form (HgO) in the spent catalyst and Mn4+ doped on the surface of TiO2 is partially converted into Mn3+ which indicates Mn and the lattice oxygen are involved in Hg0 oxidation reactions.  相似文献   

13.
《Ceramics International》2022,48(21):31843-31849
X-ray photoelectron spectroscopy (XPS) has been employed to explore the electronic structure of Zn0.3Mn0.7+xSixFe2-2xO4 (x = 0.0–0.3) ferrite series. The Si2p XPS spectra insinuated the presence of Si ions in the +4 valence state. The elemental Si0 and suboxide SiOx are present in the system, the former showing an increase and the latter a decrease in atomic percentage upon Mn–Si substitution. It is also inferred that a fraction of Si0 might be residing at the grain boundaries; however, more studies are required to substantiate this. The Fe2p XPS spectra stipulate that ferrous and ferric ions co-occur in the system. The ferrous ions occupy the octahedral sites while the ferric ions dwell on both the octahedral and the tetrahedral sites. The O1s spectra indicate a remarkable increase in the oxygen defects with increasing Mn–Si substitution (x). The Mn2p XPS data indicate that the Mn+2 states show an overall increasing tendency with increasing Mn–Si concentration. Also, the Mn+4/Mn+3 ratio shows an increment with an increase in Mn–Si substitution.  相似文献   

14.
《Ceramics International》2020,46(10):16533-16536
In this work, we prepared a type of traditional mechanoluminescent (ML) material (i.e., ZnS:Mn2+) by using the sol-gel method with addition of K2S to the Zinc Oleate and Mn(NO3)2 water solution. Then, 2D graphene-coupled ZnS:Mn2+ nanocomposites were achieved by coupling the ZnS:Mn2+ with the 2D graphene. All the samples were characterized using powder X-ray diffraction (XRD), transmission electron microscopy (TEM), photoluminescence (PL) and pressure-induced PL spectra, galvanostatic charge-discharge and cyclic voltammetry. The PL results indicated that the ZnS:Mn2+ and 2D graphene-coupled ZnS:Mn2+ samples exhibited a broad Mn2+ emission band at 585 nm. The pressure-induced PL spectra showed that the two samples had pressure-controlled luminescence. The pressure-induced PL positions were the same as the PL positions. Since the ML properties are related to the defects, here we added the Li+ ions into the ZnS:Mn2+ sample in order to study the influence of defects on the ML spectral variation, where the Li+ ions were used as the charge compensator. As a result, a mechanistic profile which could illustrate the ML reason was proposed. When the conductive polyoxometalate (POM) was dispersed into the ZnS:Mn2+ and graphene-coupled ZnS:Mn2+, we found further that the ML intensity and the used pressure value featured a linear relationship and the ML intensity of the two samples could recover after several cycles. Finally, we demonstrated that the graphene-coupled ZnS:Mn2+ could use for monitoring human health problem such as the pulse rate.  相似文献   

15.
Synthesis of nanocrystalline pristine and Mn-doped calcium copper titanate quadruple perovskites, CaCu3?xMnxTi4?xMnxO12 (x = 0, 0.5, and 1.0) by modified citrate solution combustion method has been reported. Powder X-ray diffraction patterns attest the phase purity of the perovskite materials. Average particle sizes of all the materials obtained from the Scherrer's formula are in the range of 55–70 nm. The specific surface areas for all the perovskites obtained from BET isotherms are found to be low as expected for the condensed oxide systems and fall in the range of 13–17 m2 g?1. Transmission electron microscopy studies show a reduction in particle size of CaCu3Ti4O12 with increase in Mn doping. Ca and Ti are present in +2 and +4 oxidation states in all the materials as demonstrated by X-ray photoelectron spectroscopy analyses. Cu2+ gets reduced in CaCu3Ti4O12 with higher Mn content. Mn is observed to be present only in +3 oxidation state. All the materials have been examined to be active in CO oxidation as well as H2 production from methanol steam reforming. CaCu3Ti4O12 with ~14 at.% Mn is found to show best catalytic activities among these materials. A comprehensive analysis of the catalytic activities of these perovskites toward CO oxidation and H2 production from MSR reveal the cooperative activity of copper-manganese in the doped perovskites and it is more effective at lower manganese content.  相似文献   

16.
The photoluminescence (PL) properties of the Mn, Pb co-doped ZrO2 nanocrystals have been investigated in detail. A relatively broad and strong emission band centered at about 640 nm was observed originating from the 4T1 (4G) to the 6A1 (6S) transition of Mn2+. In the presence of Pb2+, the luminescent intensities of the ZrO2: Mn nanocrystals have been greatly enhanced due to the energy transfer from Pb2+ to Mn2+. As a concentration quenching exists, the optimum value of Pb2+ is 5%.  相似文献   

17.
Manganese materials with attractive optical properties have been proposed for applications in such areas as photonics, light-emitting diodes, and bioimaging. In this paper, we have demonstrated multicolor Mn2+ luminescence in the visible region by controlling Ce3+-Mn2+ energy transfer in rare earth nanocrystals [NCs]. CeF3 and CePO4 NCs doped with Mn2+ have been prepared and can be well dispersed in aqueous solutions. Under ultraviolet light excitation, both the CeF3:Mn and CePO4:Mn NCs exhibit Mn2+ luminescence, yet their output colors are green and orange, respectively. By optimizing Mn2+ doping concentrations, Mn2+ luminescence quantum efficiency and Ce3+-Mn2+ energy transfer efficiency can respectively reach 14% and 60% in the CeF3:Mn NCs.  相似文献   

18.
The electronic and local atomic structural characterization of a promising cathode material, LiFe0.4Mn0.6PO4, for a lithium rechargeable battery was performed by in situ X-ray absorption fine structure (XAFS) on both Mn and Fe K-edges. Upon delithiation, the X-ray absorption near edge structure (XANES) spectra analysis showed that the Fe2+/Fe3+ electrochemical reaction was two times faster than that of Mn2+/Mn3+. The Fe and Mn K-edge extended X-ray absorption fine structure (EXAFS) spectra were effectively altered with different spectral behaviors for the local atomic structure near Fe and Mn during delithiation. Alternatively, the EXAFS spectra of LiFePO4 changed significantly and those of LiMnPO4 were constant through all delithiations for the corresponding reference materials of LiFePO4 and LiMnPO4. The present study with XAFS characterization demonstrates that initially delithiated Fe-rich domains at 3.5 V can promote more effective local structural change of the neighboring Mn-rich domains during the next second plateau at 4.1 V, which can ease delithiation in the Mn-rich domains through more flexible reaction of the local structure in the Mn octahedra.  相似文献   

19.
《Ceramics International》2020,46(13):21351-21359
The luminescence properties of ceramic phosphors based on two spinel hosts MgAl2O4 and ZnAl2O4 doped with manganese ions have been studied. It has been found that the spectral properties of these phosphors can be strongly varied by changing synthesis conditions. Both types of doped ceramic spinel can serve as efficient Mn2+ green-emitting phosphors having peak emissions at 525 and 510 nm, respectively. Mn-doped MgAl2O4 spinel can also be prepared as an efficient Mn4+ red-emitting phosphor having peak emission at ~651 nm by using specific temperatures of heat treatment in air. It has also been shown that the conversion of Mn2+ to Mn4+ and viсe versa, as well as the coexistence of Mn2+ green and Mn4+ red emissions, can be accomplished by properly chosen annealing conditions of the same initially synthesized MgAl2O4:Mn sample. Manganese doped MgAl2O4 spinel with an optimal intensity ratio of green and red emissions can be a promising single-phase bicolor phosphor suitable for the development of warm white phosphor-converted LED lamps. On the other hand, it has been determined that perfectly normal ZnAl2O4 spinel cannot be doped with Mn4+ ions in contrast to partially inverse MgAl2O4 spinel. However, ZnAl2O4 samples unintentionally doped with impurity Cr3+ ions show emission spectra in the far-red region with well pronounced R, N and vibronic lines of Cr3+ luminescence due to the perfect normal spinel structure of synthesized ZnAl2O4 ceramics. Also, by partially substituting Al3+ cations for Mg2+ in ZnAl2O4 there is an opportunity to obtain Mn4+ doped or Mn4+/Cr3+ codoped far-red emitting phosphors which can be suitable for indoor plant growth lighting sources.  相似文献   

20.
Sr0.4La0.6Ti1−xMnxO3−δ with rhombohedral structure has been investigated in terms of their electrochemical performance, redox stability, and electro-catalytic properties for solid oxide fuel cell anodes. The performance of Sr0.4La0.6Ti1−xMnxO3−δ anodes for solid oxide fuel cells strongly depends on the Mn substitution at the B-site of the perovskites. Electrical conductivity of Sr0.4La0.6Ti1−xMnxO3−δ increases with increasing Mn content. X-ray photoelectron spectroscopy analysis reveals that the amount of Mn3+ and Ti3+, which is an electronic charge carrier, increases with Mn doping. The reduced anode powders with high Mn/Ti ratio show oxygen storage capability and a low carbon deposition rate. Linear thermal expansion coefficients of Sr0.4La0.6Ti1−xMnxO3−δ anodes range from 9.46×10−6 K−1 to 11.3×10−6 K−1. The maximum power densities of the single cell with the Sr0.4La0.6Ti0.2Mn0.8O3−δ anode in humidified H2 and CH4 at 800 °C are 0.29 W cm−2 and 0.24 W cm−2, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号