首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among classical BCR-ABL-negative myeloproliferative neoplasms (MPN), primary myelofibrosis (PMF) is the most aggressive subtype from a clinical standpoint, posing a great challenge to clinicians. Whilst the biological consequences of the three MPN driver gene mutations (JAK2, CALR, and MPL) have been well described, recent data has shed light on the complex and dynamic structure of PMF, that involves competing disease subclones, sequentially acquired genomic events, mostly in genes that are recurrently mutated in several myeloid neoplasms and in clonal hematopoiesis, and biological interactions between clonal hematopoietic stem cells and abnormal bone marrow niches. These observations may contribute to explain the wide heterogeneity in patients’ clinical presentation and prognosis, and support the recent effort to include molecular information in prognostic scoring systems used for therapeutic decision-making, leading to promising clinical translation. In this review, we aim to address the topic of PMF molecular genetics, focusing on four questions: (1) what is the role of mutations on disease pathogenesis? (2) what is their impact on patients’ clinical phenotype? (3) how do we integrate gene mutations in the risk stratification process? (4) how do we take advantage of molecular genetics when it comes to treatment decisions?  相似文献   

2.
Genetic studies in the past decade have improved our understanding of the molecular basis of the BCR-ABL1-negative myeloproliferative neoplasm (MPN) polycythaemia vera (PV). Such breakthroughs include the discovery of the JAK2V617F driver mutation in approximately 95% of patients with PV, as well as some very rare cases of familial hereditary MPN caused by inherited germline mutations. Patients with PV often progress to fibrosis or acute myeloid leukaemia, both associated with very poor clinical outcome. Moreover, thrombosis and major bleeding are the principal causes of morbidity and mortality. As a result of increasingly available and economical next-generation sequencing technologies, mutational studies have revealed the prognostic relevance of a few somatic mutations in terms of thrombotic risk and risk of transformation, helping to improve the risk stratification of patients with PV. Finally, knowledge of the molecular basis of PV has helped identify targets for directed therapy. The constitutive activation of the tyrosine kinase JAK2 is targeted by ruxolitinib, a JAK1/JAK2 tyrosine kinase inhibitor for PV patients who are resistant or intolerant to cytoreductive treatment with hydroxyurea. Other molecular mechanisms have also been revealed, and numerous agents are in various stages of development. Here, we will provide an update of the recent published literature on how molecular testing can improve the diagnosis and prognosis of patients with PV and present recent advances that may have prognostic value in the near future.  相似文献   

3.
CALR mutations are a revolutionary discovery and represent an important hallmark of myeloproliferative neoplasms (MPN), especially essential thrombocythemia and primary myelofibrosis. To date, several CALR mutations were identified, with only frameshift mutations linked to the diseased phenotype. It is of diagnostic and prognostic importance to properly define the type of CALR mutation and subclassify it according to its structural similarities to the classical mutations, a 52-bp deletion (type 1 mutation) and a 5-bp insertion (type 2 mutation), using a statistical approximation algorithm (AGADIR). Today, the knowledge on the pathogenesis of CALR-positive MPN is expanding and several cellular mechanisms have been recognized that finally cause a clonal hematopoietic expansion. In this review, we discuss the current basis of the cellular effects of CALR mutants and the understanding of its implementation in the current diagnostic laboratorial and medical practice. Different methods of CALR detection are explained and a diagnostic algorithm is shown that aids in the approach to CALR-positive MPN. Finally, contemporary methods joining artificial intelligence in accordance with molecular-genetic biomarkers in the approach to MPN are presented.  相似文献   

4.
Myeloid malignancy is a broad term encapsulating myeloproliferative neoplasms (MPN), myelodysplastic syndrome (MDS) and acute myeloid leukaemia (AML). Initial studies into genomic profiles of these diseases have shown 2000 somatic mutations prevalent across the spectrum of myeloid blood disorders. Epigenetic mutations are emerging as critical components of disease progression, with mutations in genes controlling chromatin regulation and methylation/acetylation status. Genes such as DNA methyltransferase 3A (DNMT3A), ten eleven translocation methylcytosine dioxygenase 2 (TET2), additional sex combs-like 1 (ASXL1), enhancer of zeste homolog 2 (EZH2) and isocitrate dehydrogenase 1/2 (IDH1/2) show functional impact in disease pathogenesis. In this review we discuss how current knowledge relating to disease progression, mutational profile and therapeutic potential is progressing and increasing understanding of myeloid malignancies.  相似文献   

5.
Mucosal melanoma is a rare and aggressive subtype of melanoma. Unlike its cutaneous counterpart, mucosal melanoma has only gained limited benefit from novel treatment approaches due to the lack of actionable driver mutations and poor response to immunotherapy. Over the last years, whole-genome and exome sequencing techniques have led to increased knowledge on the molecular landscape of mucosal melanoma. Molecular studies have underlined noteworthy findings with potential therapeutic implications, including the presence of KIT mutations, which are potential targets of tyrosine kinase inhibitors currently in use in the clinic (imatinib), but also SF3B1 mutation, CDK4 amplifications, and CDKN2A gene deletions, which are presently under investigation in clinical trials. Recent results from a pooled analysis of patients with mucosal melanoma treated with immunotherapy have suggested that the combination of immune checkpoint inhibitors might improve survival outcomes in this subset of patients, as compared with single-agent immunotherapy. However, these results are not confirmed across different studies, and combo-immunotherapy correlates with a higher rate of adverse events. In this review, we describe the clinical, biological, and genetic features of mucosal melanoma. We also provide an update on the results of approved systemic treatment in this setting and overview the therapeutic strategies currently under investigation in clinical trials.  相似文献   

6.
Penile squamous cell carcinoma (PSCC) is a rare but aggressive neoplasm with dual pathogenesis (human papillomavirus (HPV)-associated and HPV-independent). The development of targeted treatment is hindered by poor knowledge of the molecular landscape of PSCC. We performed a thorough review of genetic alterations of PSCC focused on somatic mutations and/or copy number alterations. A total of seven articles have been identified which, overall, include 268 PSCC. However, the series are heterogeneous regarding methodologies employed for DNA sequencing and HPV detection together with HPV prevalence, and include, in general, a limited number of cases, which results in markedly different findings. Reported top-ranked mutations involve TP53, CDKN2A, FAT1, NOTCH-1 and PIK3CA. Numerical alterations involve gains in MYC and EGFR, as well as amplifications in HPV integration loci. A few genes including TP53, CDKN2A, PIK3CA and CCND1 harbor both somatic mutations and copy number alterations. Notch, RTK-RAS and Hippo pathways are frequently deregulated. Nevertheless, the relevance of the identified alterations, their role in signaling pathways or their association with HPV status remain elusive. Combined targeting of different pathways might represent a valid therapeutic approach in PSCC. This work calls for large-scale sequencing studies with robust HPV testing to improve the genomic understanding of PSCC.  相似文献   

7.
8.
Huntington’s disease (HD) is a devastating neurodegenerative disorder that is caused by an abnormal expansion of CAG repeats in the Huntingtin (HTT) gene. Although the main symptomatology is explained by alterations at the level of the central nervous system, predominantly affecting the basal ganglia, a peripheral component of the disease is being increasingly acknowledged. Therefore, the manifestation of the disease is complex and variable among CAG expansion carriers, introducing uncertainty in the appearance of specific signs, age of onset and severity of disease. The monogenic nature of the disorder allows a precise diagnosis, but the use of biomarkers with prognostic value is still needed to achieve clinical management of the patients in an individual manner. In addition, we need tools to evaluate the patient’s response to potential therapeutic approaches. In this review, we provide a succinct summary of the most interesting molecular biomarkers that have been assessed in patients, mostly obtained from body fluids such as cerebrospinal fluid, peripheral blood and saliva.  相似文献   

9.
Nucleophosmin (NPM1) gene mutations rarely occur in non-acute myeloid neoplasms (MNs) with <20% blasts. Among nearly 10,000 patients investigated so far, molecular analyses documented NPM1 mutations in around 2% of myelodysplastic syndrome (MDS) cases, mainly belonging to MDS with excess of blasts, and 3% of myelodysplastic/myeloproliferative neoplasm (MDS/MPN) cases, prevalently classified as chronic myelomonocytic leukemia. These uncommon malignancies are associated with an aggressive clinical course, relatively rapid progression to overt acute myeloid leukemia (AML) and poor survival outcomes, raising controversies on their classification as distinct clinico-pathologic entities. Furthermore, fit patients with NPM1-mutated MNs with <20% blasts could benefit most from upfront intensive chemotherapy for AML rather than from moderate intensity MDS-directed therapies, although no firm conclusion can currently be drawn on best therapeutic approaches, due to the limited available data, obtained from small and mainly retrospective series. Caution is also suggested in definitely diagnosing NPM1-mutated MNs with blast count <20%, since NPM1-mutated AML cases frequently present dysplastic features and multilineage bone marrow cells showing abnormal cytoplasmic NPM1 protein delocalization by immunohistochemical staining, therefore belonging to NPM1-mutated clone regardless of blast morphology. Further prospective studies are warranted to definitely assess whether NPM1 mutations may become sufficient to diagnose AML, irrespective of blast percentage.  相似文献   

10.
The aim of this study was exploration of the genetic background of conjunctival melanoma (CM) and correlation with recurrent and metastatic disease. Twenty-eight CM from the Rotterdam Ocular Melanoma Study group were collected and DNA was isolated from the formalin-fixed paraffin embedded tissue. Targeted next-generation sequencing was performed using a panel covering GNAQ, GNA11, EIF1AX, BAP1, BRAF, NRAS, c-KIT, PTEN, SF3B1, and TERT genes. Recurrences and metastasis were present in eight (29%) and nine (32%) CM cases, respectively. TERT promoter mutations were most common (54%), but BRAF (46%), NRAS (21%), BAP1 (18%), PTEN (14%), c-KIT (7%), and SF3B1 (4%) mutations were also observed. No mutations in GNAQ, GNA11, and EIF1AX were found. None of the mutations was significantly associated with recurrent disease. Presence of a TERT promoter mutation was associated with metastatic disease (p-value = 0.008). Based on our molecular findings, CM comprises a separate entity within melanoma, although there are overlapping molecular features with uveal melanoma, such as the presence of BAP1 and SF3B1 mutations. This warrants careful interpretation of molecular data, in the light of clinical findings. About three quarter of CM contain drug-targetable mutations, and TERT promoter mutations are correlated to metastatic disease in CM.  相似文献   

11.
Novel therapeutic approaches are emerging to restore dystrophin function in Duchenne Muscular Dystrophy (DMD), a severe neuromuscular disease characterized by progressive muscle wasting and weakness. Some of the molecular therapies, such as exon skipping, stop codon read-through and internal ribosome entry site-mediated translation rely on the type and location of mutations. Hence, their potential applicability worldwide depends on mutation frequencies within populations. In view of this, we compared the mutation profiles of the populations represented in the DMD Leiden Open-source Variation Database with original data from Mexican patients (n = 162) with clinical diagnosis of the disease. Our data confirm that applicability of exon 51 is high in most populations, but also show that differences in theoretical applicability of exon skipping may exist among populations; Mexico has the highest frequency of potential candidates for the skipping of exons 44 and 46, which is different from other populations (p < 0.001). To our knowledge, this is the first comprehensive comparison of theoretical applicability of exon skipping targets among specific populations.  相似文献   

12.
Ataxia in children is a common clinical sign of numerous neurological disorders consisting of impaired coordination of voluntary muscle movement. Its most common form, cerebellar ataxia, describes a heterogeneous array of neurologic conditions with uncountable causes broadly divided as acquired or genetic. Numerous genetic disorders are associated with chronic progressive ataxia, which complicates clinical management, particularly on the diagnostic stage. Advances in omics technologies enable improvements in clinical practice and research, so we proposed a multi-omics approach to aid in the genetic diagnosis and molecular elucidation of an undiagnosed infantile condition of chronic progressive cerebellar ataxia. Using whole-exome sequencing, RNA-seq, and untargeted metabolomics, we identified three clinically relevant mutations (rs141471029, rs191582628 and rs398124292) and an altered metabolic profile in our patient. Two POLR1C diagnostic variants already classified as pathogenic were found, and a diagnosis of hypomyelinating leukodystrophy was achieved. A mutation on the MMACHC gene, known to be associated with methylmalonic aciduria and homocystinuria cblC type, was also found. Additionally, preliminary metabolome analysis revealed alterations in our patient’s amino acid, fatty acid and carbohydrate metabolism. Our findings provided a definitive genetic diagnosis reinforcing the association between POLR1C mutations and hypomyelinating leukodystrophy and highlighted the relevance of multi-omics approaches to the disease.  相似文献   

13.
Pleural mesothelioma (PM) is a rare and aggressive disease that arises from the mesothelial cells lining the pleural cavity. Approximately 80% of PM patients have a history of asbestos exposure. The long latency period of 20–40 years from the time of asbestos exposure to diagnosis, suggests that multiple somatic genetic alterations are required for the tumorigenesis of PM. The genomic landscape of PM has been characterized by inter- and intratumor heterogeneity associated with the impairment of tumor suppressor genes such as CDKN2A, NF2, and BAP1. Current systemic therapies have shown only limited efficacy, and none is approved for patients with relapsed PM. Advances in understanding of the molecular landscape of PM has facilitated several biomarker-driven clinical trials but so far, no predictive biomarkers for targeted therapies are in clinical use. Recent advances in the PM genetics have provided optimism for successful molecular strategies in the future. Here, we summarize the molecular mechanism underlying PM pathogenesis and review potential therapeutic targets.  相似文献   

14.
The Schuurs–Hoeijmakers syndrome (SHMS) or PACS1 Neurodevelopment Disorder (PACS1-NDD) is a rare autosomal dominant disease caused by mutations in the PACS1 gene. To date, only 87 patients have been reported and, surprisingly, most of them carry the same variant (c.607C>T; p.R203W). The most relevant clinical features of the syndrome include neurodevelopment delay, seizures or a recognizable facial phenotype. Moreover, some of these characteristics overlap with other syndromes, such as the PACS2 or Wdr37 syndromes. The encoded protein phosphofurin acid cluster sorting 1 (PACS-1) is able to bind to different client proteins and direct them to their subcellular final locations. Therefore, although its main function is protein trafficking, it could perform other roles related to its client proteins. In patients with PACS1-NDD, a gain-of-function or a dominant negative mechanism for the mutated protein has been suggested. This, together with the fact that most of the patients carry the same genetic variant, makes it a good candidate for novel therapeutic approaches directed to decreasing the toxic effect of the mutated protein. Some of these strategies include the use of antisense oligonucleotides (ASOs) or targeting of its client proteins.  相似文献   

15.
Myotonic dystrophy type 1 and 2 (DM1 and DM2) are two multisystemic autosomal dominant disorders with clinical and genetic similarities. The prevailing paradigm for DMs is that they are mediated by an in trans toxic RNA mechanism, triggered by untranslated CTG and CCTG repeat expansions in the DMPK and CNBP genes for DM1 and DM2, respectively. Nevertheless, increasing evidences suggest that epigenetics can also play a role in the pathogenesis of both diseases. In this review, we discuss the available information on epigenetic mechanisms that could contribute to the DMs outcome and progression. Changes in DNA cytosine methylation, chromatin remodeling and expression of regulatory noncoding RNAs are described, with the intent of depicting an epigenetic signature of DMs. Epigenetic biomarkers have a strong potential for clinical application since they could be used as targets for therapeutic interventions avoiding changes in DNA sequences. Moreover, understanding their clinical significance may serve as a diagnostic indicator in genetic counselling in order to improve genotype–phenotype correlations in DM patients.  相似文献   

16.
Hereditary diffuse gastric cancer is an autosomal dominant syndrome characterized by a high prevalence of diffuse gastric cancer and lobular breast cancer. It is caused by inactivating mutations in the tumor suppressor gene CDH1. Genetic testing technologies have become more efficient over the years, also enabling the discovery of other susceptibility genes for gastric cancer, such as CTNNA1 among the most important genes. The diagnosis of pathogenic variant carriers with an increased risk of developing gastric cancer is a selection process involving a multidisciplinary team. To achieve optimal long-term results, it requires shared decision-making in risk management. In this review, we present a synopsis of the molecular changes and current therapeutic approaches in HDGC based on the current literature.  相似文献   

17.
Mutations in GABAA receptor subunit genes (GABRs) are a major etiology for developmental and epileptic encephalopathies (DEEs). This article reports a case of a genetic abnormality in GABRG2 and updates the pathophysiology and treatment development for mutations in DEEs based on recent advances. Mutations in GABRs, especially in GABRA1, GABRB2, GABRB3, and GABRG2, impair GABAergic signaling and are frequently associated with DEEs such as Dravet syndrome and Lennox–Gastaut syndrome, as GABAergic signaling is critical for early brain development. We here present a novel association of a microdeletion of GABRG2 with a diagnosed DEE phenotype. We characterized the clinical phenotype and underlying mechanisms, including molecular genetics, EEGs, and MRI. We then compiled an update of molecular mechanisms of GABR mutations, especially the mutations in GABRB3 and GABRG2 attributed to DEEs. Genetic therapy is also discussed as a new avenue for treatment of DEEs through employing antisense oligonucleotide techniques. There is an urgent need to define treatment targets and explore new treatment paradigms for the DEEs, as early deployment could alleviate long-term disabilities and improve quality of life for patients. This study highlights biomolecular targets for future therapeutic interventions, including via both pharmacological and genetic approaches.  相似文献   

18.
Cytomegalovirus (CMV) causes clinical issues primarily in immune-suppressed conditions. CMV-associated anterior uveitis (CMV-AU) is a notable new disease entity manifesting recurrent ocular inflammation in immunocompetent individuals. As patient demographics indicated contributions from genetic background and immunosenescence as possible underlying pathological mechanisms, we analyzed the immunogenetics of the cohort in conjunction with cell phenotypes to identify molecular signatures of CMV-AU. Among the immune cell types, natural killer (NK) cells are main responders against CMV. Therefore, we first characterized variants of polymorphic genes that encode differences in CMV-related human NK cell responses (Killer cell Immunoglobulin-like Receptors (KIR) and HLA class I) in 122 CMV-AU patients. The cases were then stratified according to their genetic features and NK cells were analyzed for human CMV-related markers (CD57, KLRG1, NKG2C) by flow cytometry. KIR3DL1 and HLA class I combinations encoding strong receptor–ligand interactions were present at substantially higher frequencies in CMV-AU. In these cases, NK cell profiling revealed expansion of the subset co-expressing CD57 and KLRG1, and together with KIR3DL1 and the CMV-recognizing NKG2C receptor. The findings imply that a mechanism of CMV-AU pathogenesis likely involves CMV-responding NK cells co-expressing CD57/KLRG1/NKG2C that develop on a genetic background of KIR3DL1/HLA-B allotypes encoding strong receptor–ligand interactions.  相似文献   

19.
Cushing’s disease represents 60–70% of all cases of Cushing’s syndrome, presenting with a constellation of clinical features associated with sustained hypercortisolism. Molecular alterations in corticotrope cells lead to the formation of ACTH-secreting adenomas, with subsequent excessive production of endogenous glucocorticoids. In the last few years, many authors have contributed to analyzing the etiopathogenesis and pathophysiology of corticotrope adenomas, which still need to be fully clarified. New molecular modifications such as somatic mutations of USP8 and other genes have been identified, and several case series and case reports have been published, highlighting new molecular alterations that need to be explored. To investigate the current knowledge of the genetics of ACTH-secreting adenomas, we performed a bibliographic search of the recent scientific literature to identify all pertinent articles. This review presents the most recent updates on somatic and germline mutations underlying Cushing’s disease. The prognostic implications of these mutations, in terms of clinical outcomes and therapeutic scenarios, are still debated. Further research is needed to define the clinical features associated with the different genotypes and potential pharmacological targets.  相似文献   

20.
Pancreatic adenocarcinoma (PAC) is the 8th leading cause of cancer-related deaths in Taiwan, and its incidence is increasing. The development of PAC involves successive accumulation of multiple genetic alterations. Understanding the molecular pathogenesis and heterogeneity of PAC may facilitate personalized treatment for PAC and identify therapeutic agents. We performed tumor-only next-generation sequencing (NGS) with targeted panels to explore the molecular changes underlying PAC patients in Taiwan. The Ion Torrent Oncomine Comprehensive Panel (OCP) was used for PAC metastatic lesions, and more PAC samples were sequenced with the Ion AmpliSeq Cancer Hot Spot (CHP) v2 panel. Five formalin-fixed paraffin-embedded (FFPE) metastatic PAC specimens were successfully assayed with OCP, and KRAS was the most prevalent alteration, which might contraindicate the use of anti-EGFR therapy. One PAC patient harbored a FGFR2 p. C382R mutation, which might benefit from FGFR tyrosine kinase inhibitors. An additional 38 samples assayed with CHP v2 showed 100 hotspot variants, collapsing to 54 COSMID IDs. The most frequently mutated genes were TP53, KRAS, and PDGFRA (29, 23, 10 hotspot variants), impacting 11, 23, and 10 PAC patients. Highly pathogenic variants, including COSM22413 (PDGFRA, FATHMM predicted score: 0.88), COSM520, COSM521, and COSM518 (KRAS, FATHMM predicted score: 0.98), were reported. By using NGS with targeted panels, somatic mutations with therapeutic potential were identified. The combination of clinical and genetic information is useful for decision making and precise selection of targeted medicine.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号