首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hashimoto’s thyroiditis is one of the most common endocrine disorders, affecting up to 20% of the adult population. No treatment or prevention exists except hormonal substitution for hypothyroidism. We hypothesize that it may be possible to selectively suppress anti-thyroglobulin (Tg) IgG antibody-producing B lymphocytes from HT patients by a chimeric protein molecule containing a monoclonal antibody specific for the human inhibitory receptor CR1, coupled to peptide epitopes derived from Tg protein. We expect that this treatment will down-regulate B-cell autoreactivity by delivering a strong inhibitory signal. Three peptides—two epitope-predicted ones derived from Tg and another irrelevant peptide—were synthesized and then coupled with monoclonal anti-human CR1 antibody to construct three chimeric molecules. The binding to CD35 on human B cells and the effects of the chimeric constructs on PBMC and TMC from patients with HT were tested using flow cytometry, ELISpot assay, and immunoenzyme methods. We found that after the chemical conjugation, all chimeras retained their receptor-binding capacity, and the Tg epitopes could be recognized by anti-Tg autoantibodies in the patients’ sera. This treatment downregulated B-cell autoreactivity and cell proliferation, inhibited Tg-specific B-cell differentiation to plasmablasts and promoted apoptosis to the targeted cells. The treatment of PBMCs from HT patients with Tg-epitope-carrying chimeric molecules affects the activity of Tg-specific autoreactive B lymphocytes, delivering to them a strong suppressive signal.  相似文献   

2.
The essential trace element selenium (Se) is needed for the biosynthesis of selenocysteine-containing selenoproteins, including the secreted enzyme glutathione peroxidase 3 (GPX3) and the Se-transporter selenoprotein P (SELENOP). Both are found in blood and thyroid colloid, where they serve protective functions. Serum SELENOP derives mainly from hepatocytes, whereas the kidney contributes most serum GPX3. Studies using transgenic mice indicated that renal GPX3 biosynthesis depends on Se supply by hepatic SELENOP, which is produced in protein variants with varying Se contents. Low Se status is an established risk factor for autoimmune thyroid disease, and thyroid autoimmunity generates novel autoantigens. We hypothesized that natural autoantibodies to SELENOP are prevalent in thyroid patients, impair Se transport, and negatively affect GPX3 biosynthesis. Using a newly established quantitative immunoassay, SELENOP autoantibodies were particularly prevalent in Hashimoto’s thyroiditis as compared with healthy control subjects (6.6% versus 0.3%). Serum samples rich in SELENOP autoantibodies displayed relatively high total Se and SELENOP concentrations in comparison with autoantibody-negative samples ([Se]; 85.3 vs. 77.1 µg/L, p = 0.0178, and [SELENOP]; 5.1 vs. 3.5 mg/L, p = 0.001), while GPX3 activity was low and correlated inversely to SELENOP autoantibody concentrations. In renal cells in culture, antibodies to SELENOP inhibited Se uptake. Our results indicate an impairment of SELENOP-dependent Se transport by natural SELENOP autoantibodies, suggesting that the characterization of health risk from Se deficiency may need to include autoimmunity to SELENOP as additional biomarker of Se status.  相似文献   

3.
Autoimmune thyroid diseases (AITDs) are chronic autoimmune disorders that cause impaired immunoregulation, leading to specific immune responses against thyroid antigens. Graves’ disease (GD) and Hashimoto’s thyroiditis (HT) are the major forms of AITDs. Increasing evidence suggests a possible role of microbiota alterations in the pathogenesis and progression of AITDs. This systematic review was designed to address the following question: “Is microbiota altered in patients with AITDs?” After screening the selected studies using the inclusion and exclusion criteria, 16 studies were included in this review (in accordance with PRISMA statement guidelines). A meta-analysis revealed that patients with HT showed significantly higher values of diversity indices (except for the Simpson index) and that patients with GD showed significant tendencies toward lower values of all assessed indices compared with healthy subjects. However, the latter demonstrated a higher relative abundance of Bacteroidetes and Actinobacteria at the phylum level and thus Prevotella and Bifidobacterium at the genus level, respectively. Thyroid peroxidase antibodies showed the most significant positive and negative correlations between bacterial levels and thyroid functional parameters. In conclusion, significant alterations in the diversity and composition of the intestinal microbiota were observed in both GD and HT patients.  相似文献   

4.
In Hashimoto’s thyroiditis (HT), oxidative stress (OS) is driven by Th1 cytokines’ response interfering with the normal function of thyrocytes. OS results from an imbalance between an excessive production of reactive oxygen species (ROS) and a lowering of antioxidant production. Moreover, OS has been shown to inhibit Sirtuin 1 (SIRT1), which is able to prevent hypoxia-inducible factor (HIF)-1α stabilization. The aims of this study were to determine the involvement of NADPH-oxidases (NOX), SIRT1, and HIF-1α in HT pathophysiology as well as the status of antioxidant proteins such as peroxiredoxin 1 (PRDX1), catalase, and superoxide dismutase 1 (SOD1). The protein expressions of NOX2, NOX4, antioxidant enzymes, SIRT1, and HIF-1α, as well as glucose transporter-1 (GLUT-1) and vascular endothelial growth factor A (VEGF-A), were analyzed by Western blot in primary cultures of human thyrocytes that were or were not incubated with Th1 cytokines. The same proteins were also analyzed by immunohistochemistry in thyroid samples from control and HT patients. In human thyrocytes incubated with Th1 cytokines, NOX4 expression was increased whereas antioxidants, such as PRDX1, catalase, and SOD1, were reduced. Th1 cytokines also induced a significant decrease of SIRT1 protein expression associated with an upregulation of HIF-1α, GLUT-1, and VEGF-A proteins. With the exception of PRDX1 and SOD1, similar results were obtained in HT thyroids. OS due to an increase of ROS produced by NOX4 and a loss of antioxidant defenses (PRDX1, catalase, SOD1) correlates to a reduction of SIRT1 and an upregulation of HIF 1α, GLUT-1, and VEGF-A. Our study placed SIRT1 as a key regulator of OS and we, therefore, believe it could be considered as a potential therapeutic target in HT.  相似文献   

5.
Hashimoto’s thyroiditis (HT) is an organ-specific immune disease characterized by the presence of lymphocytic infiltration and serum autoantibodies. Previous studies have confirmed the critical role of Th17 cells in the pathopoiesis of HT patients. Additionally, regulatory T cells (Treg) display a dysregulatory function in autoimmune disease. The purpose of this study is to investigate the alteration of Th17 and Treg cells in HT patients and explore contributing factors. We found there was an increased ratio of Th17/Treg in HT patients and a positive correlation with autoantibodies (anti-TgAb). In addition, there was an increased level of GITRL, which has been demonstrated to be correlated with the increassement of Th17 cells in the serum and thyroid glands of HT patients; the upregulated serum level of GITRL has a positive correlation with the percentage of Th17 cells in HT patients. In summary, an increase in GITRL may impair the balance of Th17/Treg, and contribute to the pathopoiesis of Hashimoto’s thyroiditis.  相似文献   

6.
7.
Hashimoto thyroiditis (HT) is a common autoimmune disorder with a strong genetic background. Several genetic factors have been suggested, yet numerous genetic contributors remain to be fully understood in HT pathogenesis. MicroRNAs (miRs) are gene expression regulators critically involved in biological processes, of which polymorphisms can alter their function, leading to pathologic conditions, including autoimmune diseases. We examined whether miR-499 rs3746444 polymorphism is associated with susceptibility to HT in an Iranian subpopulation. Furthermore, we investigated the potential interacting regulatory network of the miR-499. This case-control study included 150 HT patients and 152 healthy subjects. Genotyping of rs3746444 was performed by the PCR-RFLP method. Also, target genomic sites of the polymorphism were predicted using bioinformatics. Our results showed that miR-499 rs3746444 was positively associated with HT risk in heterozygous (OR = 3.32, 95%CI = 2.00–5.53, p < 0.001, CT vs. TT), homozygous (OR = 2.81, 95%CI = 1.30–6.10, p = 0.014, CC vs. TT), dominant (OR = 3.22, 95%CI = 1.97–5.25, p < 0.001, CT + CC vs. TT), overdominant (OR = 2.57, 95%CI = 1.62–4.09, p < 0.001, CC + TT vs. CT), and allelic (OR = 1.92, 95%CI = 1.37–2.69, p < 0.001, C vs. T) models. Mapping predicted target genes of miR-499 on tissue-specific-, co-expression-, and miR-TF networks indicated that main hub-driver nodes are implicated in regulating immune system functions, including immunorecognition and complement activity. We demonstrated that miR-499 rs3746444 is linked to HT susceptibility in our population. However, predicted regulatory networks revealed that this polymorphism is contributing to the regulation of immune system pathways.  相似文献   

8.
There is evidence indicating that a vegan diet could be beneficial in the prevention of neurodegenerative disorders, including Alzheimer’s disease (AD). The purpose of this review is to summarize the current knowledge on the positive and negative aspects of a vegan diet regarding the risk of AD. Regarding AD prevention, a vegan diet includes low levels of saturated fats and cholesterol, contributing to a healthy blood lipid profile. Furthermore, it is rich in phytonutrients, such as vitamins, antioxidants, and dietary fiber, that may help prevent cognitive decline. Moreover, a vegan diet contributes to the assumption of quercetin, a natural inhibitor of monoamine oxidase (MAO), which can contribute to maintaining mental health and reducing AD risk. Nonetheless, the data available do not allow an assessment of whether strict veganism is beneficial for AD prevention compared with vegetarianism or other diets. A vegan diet lacks specific vitamins and micronutrients and may result in nutritional deficiencies. Vegans not supplementing micronutrients are more prone to vitamin B12, vitamin D, and DHA deficiencies, which have been linked to AD. Thus, an evaluation of the net effect of a vegan diet on AD prevention and/or progression should be ascertained by taking into account all the positive and negative effects described here.  相似文献   

9.
Hashimoto’s thyroiditis (HT) is the most common autoimmune disease and the leading cause of hypothyroidism, in which damage to the thyroid gland occurs due to the infiltration of lymphocytes. It is characterized by increased levels of antibodies against thyroid peroxidase and thyroglobulin. In this review, we present the metabolic profile, the effectiveness of micronutrient supplementation and the impact of dietary management in patients with HT. For this current literature review, the databases PubMed, Cochrane, Medline and Embase were reviewed from the last ten years until March 2022. This article provides a comprehensive overview of recent randomized controlled trials, meta-analyses, and clinical trials. Many patients with HT, even in the euthyroid state, have excess body weight, metabolic disorders, and reduced quality of life. Due to frequent concomitant nutritional deficiencies, the role of vitamin D, iodine, selenium, magnesium, iron and vitamin B12 is currently debated. Several studies have underlined the benefits of vitamin D and selenium supplementation. There is still no specific diet recommended for patients with HT, but a protective effect of an anti-inflammatory diet rich in vitamins and minerals and low in animal foods has been suggested. There is insufficient evidence to support a gluten-free diet for all HT patients. Pharmacotherapy, along with appropriate nutrition and supplementation, are important elements of medical care for patients with HT. The abovementioned factors may decrease autoantibody levels, improve thyroid function, slow down the inflammatory process, maintain proper body weight, relieve symptoms, and prevent nutritional deficiencies and the development of metabolic disorders in patients with HT.  相似文献   

10.
Crohn’s disease (CD) is a complex, disabling, idiopathic, progressive, and destructive disorder with an unknown etiology. The pathogenesis of CD is multifactorial and involves the interplay between host genetics, and environmental factors, resulting in an aberrant immune response leading to intestinal inflammation. Due to the high morbidity and long-term management of CD, the development of non-pharmacological approaches to mitigate the severity of CD has recently attracted great attention. The gut microbiota has been recognized as an important player in the development of CD, and general alterations in the gut microbiome have been established in these patients. Thus, the gut microbiome has emerged as a pre-eminent target for potential new treatments in CD. Epidemiological and interventional studies have demonstrated that diet could impact the gut microbiome in terms of composition and functionality. However, how specific dietary strategies could modulate the gut microbiota composition and how this would impact host–microbe interactions in CD are still unclear. In this review, we discuss the most recent knowledge on host–microbe interactions and their involvement in CD pathogenesis and severity, and we highlight the most up-to-date information on gut microbiota modulation through nutritional strategies, focusing on the role of the microbiota in gut inflammation and immunity.  相似文献   

11.
Gut microbiota dysbiosis has recently been reported in a number of clinical states, including neurological, psychiatric, cardiovascular, metabolic and autoimmune disorders. Yet, it is not completely understood how colonizing microorganisms are implicated in their pathophysiology and molecular pathways. There are a number of suggested mechanisms of how gut microbiota dysbiosis triggers or sustains extraintestinal diseases; however, none of these have been widely accepted as part of the disease pathogenesis. Recent studies have proposed that gut microbiota and its metabolites could play a pivotal role in the modulation of immune system responses and the development of autoimmunity in diseases such as rheumatoid arthritis, multiple sclerosis or type 1 diabetes. Fecal microbiota transplantation (FMT) is a valuable tool for uncovering the role of gut microbiota in the pathological processes. This review aims to summarize the current knowledge about gut microbiota dysbiosis and the potential of FMT in studying the pathogeneses and therapies of autoimmune diseases. Herein, we discuss the extraintestinal autoimmune pathologies with at least one published or ongoing FMT study in human or animal models.  相似文献   

12.
The term Western diet (WD) describes the consumption of large amounts of highly processed foods, rich in simple sugars and saturated fats. Long-term WD feeding leads to insulin resistance, postulated as a risk factor for Alzheimer’s disease (AD). AD is the main cause of progressive dementia characterized by the deposition of amyloid-β (Aβ) plaques and neurofibrillary tangles consisting of the hyperphosphorylated tau (p-Tau) protein in the brain, starting from the entorhinal cortex and the hippocampus. In this study, we report that WD-derived impairment in insulin signaling induces tau and Aβ brain pathology in wild-type C57BL/6 mice, and that the entorhinal cortex is more sensitive than the hippocampus to the impairment of brain insulin signaling. In the brain areas developing WD-induced insulin resistance, we observed changes in p-Tau(Thr231) localization in neuronal subcellular compartments, indicating progressive tauopathy, and a decrease in amyloid precursor protein levels correlating with the appearance of Aβ peptides. These results suggest that WD promotes the development of AD and may be considered not only a risk factor, but also a modifiable trigger of AD.  相似文献   

13.
Sirtuin 2 (SIRT2) has been associated to aging and age-related pathologies. Specifically, an age-dependent accumulation of isoform 3 of SIRT2 in the CNS has been demonstrated; however, no study has addressed the behavioral or molecular consequences that this could have on aging. In the present study, we have designed an adeno-associated virus vector (AAV-CAG-Sirt2.3-eGFP) for the overexpression of SIRT2.3 in the hippocampus of 2 month-old SAMR1 and SAMP8 mice. Our results show that the specific overexpression of this isoform does not induce significant behavioral or molecular effects at short or long term in the control strain. Only a tendency towards a worsening in the performance in acquisition phase of the Morris Water Maze was found in SAMP8 mice, together with a significant increase in the pro-inflammatory cytokine Il-1β. These results suggest that the age-related increase of SIRT2.3 found in the brain is not responsible for induction or prevention of senescence. Nevertheless, in combination with other risk factors, it could contribute to the progression of age-related processes. Understanding the specific role of SIRT2 on aging and the underlying molecular mechanisms is essential to design new and more successful therapies for the treatment of age-related diseases.  相似文献   

14.
15.
16.
Parkinson’s disease (PD) is an age-related neurodegenerative disorder, diagnosed on the basis of typical motor disturbances, but also characterized by the presence of non-motor symptoms, such as rapid eye movement (REM)-sleep behavior disorders, olfactory impairment, and constipation, which are often prodromal to the onset of the disease. PD is often associated with the presence of oxidative brain injury and chronic neuroinflammation, with infiltration and accumulation of peripheral immune cells that have been found in affected brain regions of PD patients. Recently, the role of the gut-brain axis in the pathogenesis of PD is getting more and more attention, and several pieces of evidence indicate alterations in the gut microbiota of PD-affected patients. Diet exerts a central role in defining the microbiota composition and different dietetic patterns can result in a higher or lower abundance of specific bacteria that, in turn, can affect gut permeability and express anti- or pro-inflammatory metabolites. In the present review, the effects of the Mediterranean diet in modulating both PD onset and its progression will be considered with a special focus on the antioxidant and anti-inflammatory properties of this dietetic regimen as well as on its effects on the microbiota composition.  相似文献   

17.
The aim of the current study was to examine whether the polymorphism loci of the tumor necrosis factor superfamily member 4 (TNFSF4) gene increase the risk of susceptibility to autoimmune thyroid diseases (AITDs) in the Han Chinese population, and a case-control study was performed in a set of 1,048 AITDs patients and 909 normal healthy controls in the study. A total of four tagging single nucleotide polymorphisms (SNPs) in the TNFSF4 region, including rs7514229, rs1234313, rs16845607 and rs3850641, were genotyped using the method of ligase detection reaction. An association between GG genotype of rs3850641 in TNFSF4 gene and AITDs was found (p = 0.046). Additionally, the clinical sub-phenotype analysis revealed a significant association between GG genotype in rs7514229 and AITDs patients who were ≤18 years of age. Furthermore, rs3850641 variant allele G was in strong association with hypothyroidism in Hashimoto’s thyroiditis (HT) (p = 0.018). The polymorphisms of the TNFSF4 gene may contribute to the susceptibility to AITDs pathogenesis.  相似文献   

18.
Neurodegenerative disorders are a major public health issue. Despite decades of research efforts, we are still seeking an efficient cure for these pathologies. The initial paradigm of large aggregates of amyloid proteins (amyloid plaques, Lewis bodies) as the root cause of Alzheimer’s and Parkinson’s diseases has been mostly dismissed. Instead, membrane-bound oligomers forming Ca2+-permeable amyloid pores are now considered appropriate targets for these diseases. Over the last 20 years, our group deciphered the molecular mechanisms of amyloid pore formation, which appeared to involve a common pathway for all amyloid proteins, including Aβ (Alzheimer) and α-synuclein (Parkinson). We then designed a short peptide (AmyP53), which prevents amyloid pore formation by targeting gangliosides, the plasma membrane receptors of amyloid proteins. Herein, we show that aqueous solutions of AmyP53 are remarkably stable upon storage at temperatures up to 45 °C for several months. AmyP53 appeared to be more stable in whole blood than in plasma. Pharmacokinetics studies in rats demonstrated that the peptide can rapidly and safely reach the brain after intranasal administration. The data suggest both the direct transport of AmyP53 via the olfactory bulb (and/or the trigeminal nerve) and an indirect transport via the circulation and the blood–brain barrier. In vitro experiments confirmed that AmyP53 is as active as cargo peptides in crossing the blood–brain barrier, consistent with its amino acid sequence specificities and physicochemical properties. Overall, these data open a route for the use of a nasal spray formulation of AmyP53 for the prevention and/or treatment of Alzheimer’s and Parkinson’s diseases in future clinical trials in humans.  相似文献   

19.
Aging is associated with a decline in cognitive function, which can partly be explained by the accumulation of damage to the brain cells over time. Neurons and glia undergo morphological and ultrastructure changes during aging. Over the past several years, it has become evident that at the cellular level, various hallmarks of an aging brain are closely related to mitophagy. The importance of mitochondria quality and quantity control through mitophagy is highlighted by the contribution that defects in mitochondria–autophagy crosstalk make to aging and age-related diseases. In this review, we analyze some of the more recent findings regarding the study of brain aging and neurodegeneration in the context of mitophagy. We discuss the data on the dynamics of selective autophagy in neurons and glial cells during aging and in the course of neurodegeneration, focusing on three mechanisms of mitophagy: non-receptor-mediated mitophagy, receptor-mediated mitophagy, and transcellular mitophagy. We review the role of mitophagy in neuronal/glial homeostasis and in the molecular pathogenesis of neurodegenerative disorders, such as Parkinson’s disease, Alzheimer’s disease, and other disorders. Common mechanisms of aging and neurodegeneration that are related to different mitophagy pathways provide a number of promising targets for potential therapeutic agents.  相似文献   

20.
Autoimmune epithelitis and chronic inflammation are one of the characteristic features of the immune pathogenesis of Sjögren’s syndrome (SS)-related dry eye disease. Autoimmune epithelitis can cause the dysfunction of the excretion of tear fluid and mucin from the lacrimal glands and conjunctival epithelia and meibum from the meibomian glands. The lacrimal gland and conjunctival epithelia express major histocompatibility complex class II or human leukocyte antigen-DR and costimulatory molecules, acting as nonprofessional antigen-presenting cells for T cell and B cell activation in SS. Ocular surface epithelium dysfunction can lead to dry eye disease in SS. Considering the mechanisms underlying SS-related dry eye disease, this review highlights autoimmune epithelitis of the ocular surface, chronic inflammation, and several other molecules in the tear film, cornea, conjunctiva, lacrimal glands, and meibomian glands that represent potential targets in the treatment of SS-related dry eye disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号