首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
While tumoral Smad-mediated transforming growth factor β (TGFβ) signaling drives osteolytic estrogen receptor α-negative (ER-) breast cancer bone metastases (BMETs) in preclinical models, its role in ER+ BMETs, representing the majority of clinical BMETs, has not been documented. Experiments were undertaken to examine Smad-mediated TGFβ signaling in human ER+ cells and bone-tropic behavior following intracardiac inoculation of estrogen (E2)-supplemented female nude mice. While all ER+ tumor cells tested (ZR-75-1, T47D, and MCF-7-derived) expressed TGFβ receptors II and I, only cells with TGFβ-inducible Smad signaling (MCF-7) formed osteolytic BMETs in vivo. Regulated secretion of PTHrP, an osteolytic factor expressed in >90% of clinical BMETs, also tracked with osteolytic potential; TGFβ and E2 each induced PTHrP in bone-tropic or BMET-derived MCF-7 cells, with the combination yielding additive effects, while in cells not forming BMETs, PTHrP was not induced. In vivo treatment with 1D11, a pan-TGFβ neutralizing antibody, significantly decreased osteolytic ER+ BMETs in association with a decrease in bone-resorbing osteoclasts at the tumor-bone interface. Thus, TGFβ may also be a driver of ER+ BMET osteolysis. Moreover, additive pro-osteolytic effects of tumoral E2 and TGFβ signaling could at least partially explain the greater propensity for ER+ tumors to form BMETs, which are primarily osteolytic.  相似文献   

2.
It has been reported that lidocaine is toxic to various types of cells. And a recent study has confirmed that lidocaine exerts a demethylation effect and regulates the proliferation of human breast cancer cell lines. To recognize a potential anti-tumor effect of lidocaine, we evaluated the DNA demethylation by lidocaine in human breast cancer lines, MCF-7 and MDA-MB-231 cells, and determined the influence of demethylation on the toxicity to these cells of cisplatin, which is a commonly utilized anti-tumor agent for breast cancer. Results demonstrated that lidocaine promoted a significant global genomic demethylation, and particularly in the promoters of tumor suppressive genes (TSGs), RARβ2 and RASSF1A. Further, the lidocaine treatment increased cisplatin-induced apoptosis and enhanced cisplatin-induced cytotoxicity. The combined treatment with both lidocaine and cisplatin promoted a significantly higher level of MCF-7 cell apoptosis than singular lidocaine or cisplatin treatment. Moreover, the abrogation of RARβ2 or RASSF1A expression inhibited such apoptosis. In conclusion, the present study confirms the demethylation effect of lidocaine in breast cancer cells, and found that the demethylation of RARβ2 and RASSF1A sensitized the cytotoxicity of cisplatin in breast cancer cells.  相似文献   

3.
Overexpression of human epidermal growth factor receptor-2 (HER-2) occurs in 20% of all breast cancer subtypes, especially those that present the worst prognostic outcome through a very invasive and aggressive tumour. HCC-1954 (HER-2+) is a highly invasive, metastatic cell line, whereas MCF-7 is mildly aggressive and non-invasive. We investigated membrane proteins from both cell lines that could have a pivotal biological significance in metastasis. Membrane protein enrichment for HCC-1954 and MCF-7 proteomic analysis was performed. The samples were analysed and quantified by mass spectrometry. High abundance membrane proteins were confirmed by Western blot, immunofluorescence, and flow cytometry. Protein interaction prediction and correlations with the Cancer Genome Atlas (TCGA) patient data were conducted by bioinformatic analysis. In addition, β1 integrin expression was analysed by Western blot in cells upon trastuzumab treatment. The comparison between HCC-1954 and MCF-7 membrane-enriched proteins revealed that proteins involved in cytoskeleton organisation, such as HER-2, αv and β1 integrins, E-cadherin, and CD166 were more abundant in HCC-1954. β1 integrin membrane expression was higher in the HCC-1954 cell line resistant after trastuzumab treatment. TCGA data analysis showed a trend toward a positive correlation between HER-2 and β1 integrin in HER-2+ breast cancer patients. Differences in protein profile and abundance reflected distinctive capabilities for aggressiveness and invasiveness between HCC-1954 and MCF-7 cell line phenotypes. The higher membrane β1 integrin expression after trastuzumab treatment in the HCC-1954 cell line emphasised the need for investigating the contribution of β1 integrin modulation and its effect on the mechanism of trastuzumab resistance.  相似文献   

4.
Tamoxifen resistance remains to be a huge obstacle in the treatment of hormone-dependent breast cancer, and this therefore highlights the dire need to explore the underlying mechanisms. The epithelial-mesenchymal transition (EMT) is a molecular process through which an epithelial cell transfers into a mesenchymal phenotype. Roles of EMT in embryo development, cancer invasion and metastasis have been extensively reported. Herein, we established tamoxifen-resistant MCF-7/TR breast cancer cells and showed that MCF-7/TR cells underwent EMT driven by enhanced endogenous TGF-β/Smad signaling. Ectopic supplement of TGF-β promoted in MCF-7 cells a mesenchymal and resistant phenotype. In parallel, we demonstrated that resveratrol was capable of synergizing with tamoxifen and triggering apoptosis in MCF-7/TR cells. Further Western blot analysis indicated that the chemosensitizing effects of resveratrol were conferred with its modulation on endogenous TGF-β production and Smad phosphorylation. In particular, 50 μM resveratrol had minor effects on MCF-7/TR cell proliferation, but could significantly attenuate endogenous TGF-β production and the Smad pathway, ultimately leading to reversion of EMT. Collectively, our study highlighted distinct roles of EMT in tamoxifen resistance and resveratrol as a potential agent to overcome acquired tamoxifen resistance. The molecular mechanism of resveratrol chemosensitizing effects is, at least in part, TGF-β/Smad-dependent.  相似文献   

5.
Triple-negative breast cancer (TNBC) has the poorest prognosis of all breast cancer subtypes. Recently, the activation of NF-κB, which is involved in the growth and survival of malignant tumors, has been demonstrated in TNBC, suggesting that NF-κB may serve as a new therapeutic target. In the present study, we examined whether dimethyl fumarate (DMF), an NF-κB inhibitor, induces apoptosis in TNBC cells and enhances the apoptosis-inducing effect of paclitaxel and adriamycin. Cell survival was analyzed by the trypan blue assay and apoptosis assay. Protein detection was examined by immunoblotting. The activation of NF-κB p65 was correlated with poor prognosis in patients with TNBC. DMF induced apoptosis in MDA-MB-231 and BT-549 cells at concentrations that were non-cytotoxic to the normal mammary cell line MCF-10A. Furthermore, DMF inhibited NF-κB nuclear translocation and Survivin, XIAP, Bcl-xL, and Bcl-2 expression in MDA-MB-231 and BT-549 cells. Moreover, DMF enhanced the apoptosis-inducing effect of paclitaxel and adriamycin in MDA-MB-231 cells. These findings suggest that DMF may be an effective therapeutic agent for the treatment of TNBC, in which NF-κB is constitutively active. DMF may also be useful as an adjuvant therapy to conventional anticancer drugs.  相似文献   

6.
Breast cancer is one of the leading causes of cancer-related death among females worldwide. A major challenge is to develop innovative therapy in order to treat breast cancer subtypes resistant to current treatment. In the present study, we examined the effects of two Troglitazone derivatives Δ2-TGZ and AB186. Previous studies showed that both compounds induce apoptosis, nevertheless AB186 was a more potent agent. The kinetic of cellular events was investigated by real-time cell analysis system (RTCA) in MCF-7 (hormone dependent) and MDA-MB-231 (triple negative) breast cancer (TNBC) cells, followed by cell morphology analysis by immuno-localization. Both compounds induced a rapid modification of both impedance-based signals and cellular morphology. This process was associated with an inhibition of cell migration measured by wound healing and transwell assays in TNBC MDA-MB-231 and Hs578T cells. In order to identify cytoplasmic targets of AB186, we performed surface plasmon resonance (SPR) and pull-down analyses. Subsequently, 6 cytoskeleton components were identified as potential targets. We further validated α-tubulin as one of the direct targets of AB186. In conclusion, our results suggested that AB186 could be promising to develop novel therapeutic strategies to treat aggressive forms of breast cancer such as TNBC.  相似文献   

7.
Protein kinase C (PKC) comprises a family of highly related serine/threonine protein kinases involved in multiple signaling pathways, which control cell proliferation, survival, and differentiation. The role of PKCα in cancer has been studied for many years. However, it has been impossible to establish whether PKCα acts as an oncogene or a tumor suppressor. Here, we analyzed the importance of PKCα in cellular processes such as proliferation, migration, or apoptosis by inhibiting its gene expression in a luminal A breast cancer cell line (MCF-7). Differential expression analysis and phospho-kinase arrays of PKCα-KD vs. PKCα-WT MCF-7 cells identified an essential set of proteins and oncogenic kinases of the JAK/STAT and PI3K/AKT pathways that were down-regulated, whereas IGF1R, ERK1/2, and p53 were up-regulated. In addition, unexpected genes related to the interferon pathway appeared down-regulated, while PLC, ERBB4, or PDGFA displayed up-regulated. The integration of this information clearly showed us the usefulness of inhibiting a multifunctional kinase-like PKCα in the first step to control the tumor phenotype. Then allowing us to design a possible selection of specific inhibitors for the unexpected up-regulated pathways to further provide a second step of treatment to inhibit the proliferation and migration of MCF-7 cells. The results of this study suggest that PKCα plays an oncogenic role in this type of breast cancer model. In addition, it reveals the signaling mode of PKCα at both gene expression and kinase activation. In this way, a wide range of proteins can implement a new strategy to fine-tune the control of crucial functions in these cells and pave the way for designing targeted cancer therapies.  相似文献   

8.
Gangliosides have been known to play a role in the regulation of apoptosis in cancer cells. This study has employed disialyl-ganglioside GD1b to apoptosis in human breast cancer MCF-7 cells using exogenous treatment of the cells with GD1b and endogenous expression of GD1b in MCF-7 cells. First, apoptosis in MCF-7 cells was observed after treatment of GD1b. Treatment of MCF-7 cells with GD1b reduced cell growth rates in a dose and time dependent manner during GD1b treatment, as determined by XTT assay. Among the various gangliosides, GD1b specifically induced apoptosis of the MCF-7 cells. Flow cytometry and immunofluorescence assays showed that GD1b specifically induces apoptosis in the MCF-7 cells with Annexin V binding for apoptotic actions in early stage and propidium iodide (PI) staining the nucleus of the MCF-7 cells. Treatment of MCF-7 cells with GD1b activated apoptotic molecules such as processed forms of caspase-8, -7 and PARP (Poly(ADP-ribose) polymerase), without any change in the expression of mitochondria-mediated apoptosis molecules such as Bax and Bcl-2. Second, to investigate the effect of endogenously produced GD1b on the regulation of cell function, UDP-gal: β1,3-galactosyltransferase-2 (GD1b synthase, Gal-T2) gene has been transfected into the MCF-7 cells. Using the GD1b synthase-transfectants, apoptosis-related signal proteins linked to phenotype changes were examined. Similar to the exogenous GD1b treatment, the cell growth of the GD1b synthase gene-transfectants was significantly suppressed compared with the vector-transfectant cell lines and transfection activated the apoptotic molecules such as processed forms of caspase-8, -7 and PARP, but not the levels of expression of Bax and Bcl-2. GD1b-induced apoptosis was blocked by caspase inhibitor, Z-VAD. Therefore, taken together, it was concluded that GD1b could play an important role in the regulation of breast cancer apoptosis.  相似文献   

9.
10.
Triple negative breast cancer (TNBC) displays higher risk of recurrence and distant metastasis. Due to absence of estrogen receptor (ER), progesterone receptor (PR) and human epidermal growth factor receptor 2 (HER2), TNBC lacks clinically established targeted therapies. Therefore, understanding of the mechanism underlying the aggressive behaviors of TNBC is required for the design of individualized strategies and the elongation of overall survival duration. Here, we supported a positive correlation between β1 integrin and malignant behaviors such as cell migration, invasion, and drug resistance. We found that silencing of β1 integrin inhibited cell migration, invasion, and increased the sensitivity to anti-cancer drug. In contrast, activation of β1 integrin increased cell migration, invasion, and decreased the sensitivity to anti-cancer drug. Furthermore, we found that silencing of β1 integrin abolished Focal adhesion kinese (FAK) mediated cell survival. Overexpression of FAK could restore cisplatin-induced apoptosis in β1 integrin-depleted cells. Consistent to in vitro data, β1 integrin expression was also positively correlated with FAK (p = 0.031) in clinical tissue. More importantly, β1 integrin expression was significantly correlated with patient outcome. In summary, our study indicated that β1 integrin could regulate TNBC cells migration, invasion, drug sensitivity, and be a potential prognostic biomarker in TNBC patient survival.  相似文献   

11.
Targeted chemotherapy has become the forefront for cancer treatment in recent years. The selective and specific features allow more effective treatment with reduced side effects. Most targeted therapies, which include small molecules, act on specific molecular targets that are altered in tumour cells, mainly in cancers such as breast, lung, colorectal, lymphoma and leukaemia. With the recent exponential progress in drug development, programmed cell death, which includes apoptosis and autophagy, has become a promising therapeutic target. The research in identifying effective small molecules that target compensatory mechanisms in tumour cells alleviates the emergence of drug resistance. Due to the heterogenous nature of breast cancer, various attempts were made to overcome chemoresistance. Amongst breast cancers, triple negative breast cancer (TNBC) is of particular interest due to its heterogeneous nature in response to chemotherapy. TNBC represents approximately 15% of all breast tumours, however, and still has a poor prognosis. Unlike other breast tumours, signature targets lack for TNBCs, causing high morbidity and mortality. This review highlights several small molecules with promising preclinical data that target autophagy and apoptosis to induce cell death in TNBC cells.  相似文献   

12.
Breast cancer-associated fibroblasts (BCAFs), the most abundant non-cancer stromal cells of the breast tumor microenvironment (TME), dramatically sustain breast cancer (BC) progression by interacting with BC cells. BCAFs, as well as myofibroblasts, display an up regulation of activation and inflammation markers represented by α-smooth muscle actin (α-SMA) and cyclooxygenase 2 (COX-2). BCAF aggregates have been identified in the peripheral blood of metastatic BC patients. We generated an in vitro stromal model consisting of human primary BCAFs grown as monolayers or 3D cell aggregates, namely spheroids and reverted BCAFs, obtained from BCAF spheroids reverted to 2D cell adhesion growth after 216 h of 3D culture. We firstly evaluated the state of activation and inflammation and the mesenchymal status of the BCAF monolayers, BCAF spheroids and reverted BCAFs. Then, we analyzed the MCF-7 cell viability and migration following treatment with conditioned media from the different BCAF cultures. After 216 h of 3D culture, the BCAFs acquired an inactivated phenotype, associated with a significant reduction in α-SMA and COX-2 protein expression. The deactivation of the BCAF spheroids at 216 h was further confirmed by the cytostatic effect exerted by their conditioned medium on MCF-7 cells. Interestingly, the reverted BCAFs also retained a less activated phenotype as indicated by α-SMA protein expression reduction. Furthermore, the reverted BCAFs exhibited a reduced pro-tumor phenotype as indicated by the anti-migratory effect exerted by their conditioned medium on MCF-7 cells. The deactivation of BCAFs without drug treatment is possible and leads to a reduced capability of BCAFs to sustain BC progression in vitro. Consequently, this study could be a starting point to develop new therapeutic strategies targeting BCAFs and their interactions with cancer cells.  相似文献   

13.
P21 activated kinases (or group I PAKs) are serine/threonine kinases whose expression is altered in prostate and breast cancers. PAK-1 activity is inhibited by the small molecule “Inhibitor targeting PAK-1 activation-3” (IPA-3), which has selectivity for PAK-1 but is metabolically unstable. Secretory Group IIA phospholipase A2 (sPLA2) expression correlates to increased metastasis and decreased survival in many cancers. We previously designed novel liposomal formulations targeting both PAK-1 and sPLA2, called Secretory Phospholipase Responsive liposomes or SPRL-IPA-3, and demonstrated their ability to alter prostate cancer growth. The efficacy of SPRL against other types of cancers is not well understood. We addressed this limitation by determining the ability of SPRL to induce cell death in a diverse panel of cells representing different stages of breast cancer, including the invasive but non-metastatic MCF-7 cells, and metastatic triple-negative breast cancer (TNBC) cells such as MDA-MB-231, MDA-MB-468, and MDA-MB-435. We investigated the role of sPLA2 in the disposition of these liposomes by comparing the efficacy of SPRL-IPA-3 to IPA-3 encapsulated in sterically stabilized liposomes (SSL-IPA-3), a formulation shown to be less sensitive to sPLA2. Both SSL-IPA-3 and SPRL-IPA-3 induced time- and dose-dependent decreases in MTT staining in all cell lines tested, but SPRL-IPA-3-induced effects in metastatic TNBC cell lines were superior over SSL-IPA-3. The reduction in MTT staining induced by SPRL-IPA-3 correlated to the expression of Group IIA sPLA2. sPLA2 expression also correlated to increased induction of apoptosis in TNBC cell lines by SPRL-IPA-3. These data suggest that SPRL-IPA-3 is selective for metastatic TNBC cells and that the efficacy of SPRL-IPA-3 is mediated, in part, by the expression of Group IIA sPLA2.  相似文献   

14.
Breast cancer has become a global health issue requiring huge expenditures for care and treatment of patients. There is a need to discover newer cost-effective alternatives for current therapeutic regimes. Mango kernel is a waste product with potential as a source of anti-cancer phytochemicals, especially since it is non-toxic towards normal breast cell lines at concentrations for which it induces cell death in breast cancer cells. In this study, the anti-cancer effect of mango kernel extract was determined on estrogen receptor-positive human breast carcinoma (MCF-7) cells. The MCF-7 cells were cultured and treated with 5, 10 and 50 μg/mL of mango kernel extract for 12 and 24 h. In response to treatment, there were time- and dose-dependent increases in oxidative stress markers and pro-apoptotic factors; Bcl-2-like protein 4 (BAX), p53, cytochrome c and caspases (7, 8 and 9) in the MCF-7 cells treated with the extract. At the same time, there were decreases in pro-survival markers (Bcl-2 and glutathione) as the result of the treatments. The changes induced in the MCF-7 cells by mango kernel extract treatment suggest that the extract can induce cancer cell apoptosis, likely via the activation of oxidative stress. These findings need to be evaluated further to determine whether mango kernel extract can be developed as an anti-breast cancer agent.  相似文献   

15.
Kisspeptin is an anti-metastatic mediator in many cancer types, acting through its receptor, KISS1R. However, controversy remains regarding its role in breast cancer since both pro- and anti-metastatic roles have been ascribed to it. In KISS1R overexpressing triple-negative breast cancer (TNBC) cells, stimulation has been associated with increased invasion and MMP-9 expression, leading to the suggestion that hormone receptor status determines the metastatic effects of kisspeptin. To assess the veracity of this claim, we compared endogenous KISS1R signalling and physiological output in the hormone receptor-negative MDA-MB-231 and BT-20 cell lines after KP-10 (shortest active kisspeptin peptide) stimulation. MDA-MB-231 cells are metastatic when implanted in mice while BT-20 are not and remain epithelial-like. We show that both cell lines express KISS1R mRNA and respond to KP-10 by elevating calcium mobilisation. However, KP-10 stimulation induced migration of MDA-MB-231, but not BT-20 cells, in a calcium-dependent manner. Moreover, only BT-20 cells responded to KP-10 by increasing ERK phosphorylation in a β-arrestin-dependent manner. Interestingly, both cell lines displayed different complements of β-arrestin 1 and 2 expression. Overall, our data shows that, in TNBC, it is not universally true that kisspeptin/KISS1R stimulate migration or pro-metastatic behaviour, as divergent responses were observed in the two TNBC lines tested. Whether this divergence is related to the observed differences in β-arrestin complements warrants further investigation and may enable further stratification of the ability of kisspeptin to influence breast tumour behaviour.  相似文献   

16.
The L10P single nucleotide polymorphism (SNP) is located in the signal sequence of the transforming growth factor β1 (TGFβ1) gene. The proline-encoding (Pro-) allele of this SNP has been associated with an increased breast cancer risk, which has been attributed to the elevated secretion of this TGFβ1 variant observed in vitro and in male subjects. Here we investigated the association of the L10P SNP with serum levels of TGFβ1 in female breast cancer patients and controls. We genotyped the L10P SNP in 276 breast cancer patients and 255 controls. Serum TGFβ1 concentrations were measured by enzyme-linked immunosorbent assay (ELISA) in a subset of the study population (n = 211). We found no evidence for an association of the L10P SNP with breast cancer risk (per-allele odds ratio: 0.91; 95% confidence interval: 0.71–1.16). However, patients with the Pro/Pro genotype exhibited a significantly younger age at breast cancer onset (55.2 ± 14.3 years) than Leu/Leu patients (60.6 ± 13.6 years; p = 0.04), which may reflect the ability of TGFβ to promote tumor progression. Mean TGFβ1 serum levels of Pro-allele carriers were 39.4 ± 7.4 ng/mL, whereas those of Leu/Leu subjects were 37.6 ± 6.0 ng/mL (p = 0.07). Thus, compared to a previous study of male subjects, we observed only a modest increase, if any, in TGFβ1 levels of female Pro-allele carriers.  相似文献   

17.
Kong KV  Leong WK  Ng SP  Nguyen TH  Lim LH 《ChemMedChem》2008,3(8):1269-1275
Osmium carbonyl clusters, especially the cluster [Os(3)(CO)(10)(NCCH(3))(2)], were found to be active against four cancer cell lines, namely, ER+ breast carcinoma (MCF-7), ER- breast carcinoma (MDA-MB-231), metastatic colorectal adenocarcinoma (SW620), and hepatocarcinoma (Hep G2). The mode of action was studied in MCF-7 and MDA-MB-231 cell lines by a number of morphological and apoptosis assays, all of which pointed to the induction of apoptosis.  相似文献   

18.
Triple-negative breast cancer (TNBC) is unresponsive to typical hormonal treatments, causing it to be one of the deadliest forms of breast cancer. Investigating alternative therapies to increase survival rates for this disease is essential. The goal of this study was to assess cytotoxicity and apoptosis mechanisms of prenylated stilbenoids in TNBC cells. The prenylated stilbenoids arachidin-1 (A-1) and arachidin-3 (A-3) are analogs of resveratrol (RES) produced in peanut upon biotic stress. The anticancer activity of A-1 and A-3 isolated from peanut hairy root cultures was determined in TNBC cell lines MDA-MB-231 and MDA-MB-436. After 24 h of treatment, A-1 exhibited higher cytotoxicity than A-3 and RES with approximately 11-fold and six-fold lower IC50, respectively, in MDA-MB-231 cells, and nine-fold and eight-fold lower IC50, respectively, in MDA-MB-436 cells. A-1 did not show significant cytotoxicity in the non-cancerous cell line MCF-10A. While A-1 blocked cell division in G2-M phases in the TNBC cells, it did not affect cell division in MCF-10A cells. Furthermore, A-1 induced caspase-dependent apoptosis through the intrinsic pathway by activating caspase-9 and PARP cleavage, and inhibiting survivin. In conclusion, A-1 merits further research as a potential lead molecule for the treatment of TNBC.  相似文献   

19.
Physiologically, β-adrenoceptors are major regulators of lipid metabolism, which may be reflected in alterations in lipid droplet dynamics. β-adrenoceptors have also been shown to participate in breast cancer carcinogenesis. Since lipid droplets may be seen as a hallmark of cancer, the present study aimed to investigate the role of β-adrenoceptors in the regulation of lipid droplet dynamics in MCF-7 breast cancer cells. Cells were treated for up to 72 h with adrenaline (an endogenous adrenoceptor agonist), isoprenaline (a non-selective β-adrenoceptor agonist) and salbutamol (a selective β2-selective agonist), and their effects on lipid droplets were evaluated using Nile Red staining. Adrenaline or isoprenaline, but not salbutamol, caused a lipid-accumulating phenotype in the MCF-7 cells. These effects were significantly reduced by selective β1- and β3-antagonists (10 nM atenolol and 100 nM L-748,337, respectively), indicating a dependence on both β1- and β3-adrenoceptors. These effects were dependent on the cAMP signalling pathway, involving both protein kinase A (PKA) and cAMP-dependent guanine-nucleotide-exchange (EPAC) proteins: treatment with cAMP-elevating agents (forskolin or 8-Br-cAMP) induced lipid droplet accumulation, whereas either 1 µM H-89 or 1 µM ESI-09 (PKA or EPAC inhibitors, respectively) abrogated this effect. Taken together, the present results demonstrate the existence of a β-adrenoceptor-mediated regulation of lipid droplet dynamics in breast cancer cells, likely involving β1- and β3-adrenoceptors, revealing a new mechanism by which adrenergic stimulation may influence cancer cell metabolism.  相似文献   

20.
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号