首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
The effect of systemic administration of the selective neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4) on noradrenaline efflux in the frontal cortex was studied in freely-moving rats using microdialysis in vivo. Five days after treatment with DSP-4 (40 mg/kg i.p.), the noradrenaline content of the frontal cortex was reduced by 75%. Yet, noradrenaline efflux in the frontal cortex was nearly two-fold greater in DSP-4 treated rats than in saline-injected controls. Local infusion of the noradrenaline-selective uptake blocker, desipramine (5 microM), via the microdialysis probe, increased noradrenaline efflux in rats from both groups. Perfusion of Ringer's solution, containing 80 mM K+, also increased noradrenaline efflux in both groups, but the increase after DSP-4 pretreatment was greater than in the controls. In contrast, removal of Ca2+ from the infusion medium reduced noradrenaline efflux in both treatment groups. These results indicate that, at this dose, DSP-4 increases the extracellular concentration of noradrenaline in rat frontal cortex despite causing a partial lesion of noradrenergic neurones. This is due to an increase in the release of noradrenaline, although reduced clearance is also likely. These data challenge the assumption that depletion of noradrenaline content after treatment with DSP-4 invariably translates into diminished noradrenergic transmission.  相似文献   

2.
The aims of this study were to obtain conclusive evidence about the roles of a 5-hydroxytryptamine [5-HT] transporter and uptake1 in the dissipation of 5-HT in the lungs of the rat and to compare the properties of the 5-HT transporter in rat lungs with that in other tissues, including brain and platelets. In the first part of the study, the IC50 values of a range of selective inhibitors and substrates of the 5-HT transporter or uptake1 were determined for inhibition of uptake of 5-HT or noradrenaline in intact perfused lungs of rats. Monoamine oxidase was inhibited and, in experiments with noradrenaline, catechol-O-methyltransferase was also inhibited. Initial rates of uptake of 5-HT or noradrenaline were measured in lungs perfused with 2 nmol/l 3H-5-HT or 3H-noradrenaline for 2 min, in the absence or presence of at least three concentrations of paroxetine, citalopram, fluoxetine, 7-methyltryptamine, tryptamine, nisoxetine, imipramine, 5-HT, desipramine, (+)-oxaprotiline, cocaine or tyramine. The results showed that pharmacologically distinct transporters are involved in the uptake of 5-HT and noradrenaline in rat lungs, since there was no significant correlation between the IC50 values for inhibition of 5-HT and noradrenaline uptake in the lungs. However, there were significant correlations between the IC50 values for (a) inhibition of 5-HT uptake in rat lungs and of uptake by the 5-HT transporter in rat brain and (b) inhibition of noradrenaline uptake in rat lungs and of uptake1 in rat phaeochromocytoma PC-12 cells. The results support the conclusion that 5-HT uptake in rat lungs occurs, at least predominantly, by a 5-HT transporter which is very similar to or the same as that in other tissues, such as the brain, and provide further evidence for transport of noradrenaline by uptake1. Further experiments were carried out to determine whether there is any transport of 5-HT by uptake1 or of noradrenaline by the 5-HT transporter in rat lungs. Lungs were perfused with 2 nmol/l 3H-5-HT or 3H-noradrenaline for 2 min in the absence or presence of 1 mumol/l citalopram, desipramine, or citalopram and desipramine. The results showed that there was no evidence of any transport of 5-HT in the lungs by uptake1 or of noradrenaline by the 5-HT transporter, in that desipramine had no effect on 5-HT uptake (in the absence or presence of citalopram) and citalopram had no effect on noradrenaline uptake (in the absence or presence of desipramine). The final series of experiments was carried out to determine whether, at high concentrations of the amine, there is any interaction of 5-HT with uptake1 or of noradrenaline with the 5-HT transporter. Noradrenaline, at a concentration of 10 mumol/l, did not affect 5-HT uptake in lungs perfused with 2 nmol/l 3H-5-HT for 2 min (uptake1 inhibited), but 50 mumol/l 5-HT inhibited noradrenaline uptake by 56% in lungs perfused with 2 nmol/l 3H-noradrenaline for 2 min (5-HT transporter inhibited). These and the above results show that the 5-HT transporter appears to be exclusively responsible for 5-HT uptake in rat lungs, despite the possible interaction of 5-HT at high concentrations with the uptake1 transporter in the cells. On the other hand, noradrenaline is transported exclusively by uptake1 in the lungs, and there is no evidence that it interacts with the 5-HT transporter, even at high concentrations.  相似文献   

3.
T cell antigen receptor signal transduction   总被引:2,自引:0,他引:2  
1. COS-7 cells transfected with the cDNA of the human dopamine transporter (DAT cells) or the human noradrenaline transporter (NAT cells) were loaded with [3H]-dopamine or [3H]-noradrenaline and superfused with buffers of different ionic composition. 2. In DAT cells lowering the Na+ concentration to 0, 5 or 10 mM caused an increase in 3H-efflux. Cocaine (10 microM) or mazindol (0.3 microM) blocked the efflux at low Na+, but not at 0 Na+. Lowering the Cl- concentration to 0, 5 or 10 mM resulted in an increased efflux, which was blocked by cocaine or mazindol. Desipramine (0.1 microM) was without effect in all the conditions tested. 3. In NAT cells, lowering the Na+ concentration to 0, 5 or 10 mM caused an increase in 3H-efflux, which was blocked by cocaine or mazindol. Desipramine produced a partial block, its action being stronger at 5 or 10 mM Na+ than at 0 mM Na+. Efflux induced by 0, 5 or 10 mM Cl- was completely blocked by all three uptake inhibitors. 4. In cross-loading experiments, 5 mM Na(+)- or 0 Cl(-)-induced efflux was much lower from [3H]-noradrenaline-loaded DAT, than NAT cells and was sensitive to mazindol, but not to desipramine. Efflux from [3H]-dopamine-loaded NAT cells elicited by 5 mM Na+ or 0 Cl- was blocked by mazindol, as well as by desipramine. 5. Thus cloned catecholamine transporters display carrier-mediated efflux of amines if challenged by lowering the extracellular Na+ or Cl-, whilst retaining their pharmacological profile. The transporters differ with regard to the ion dependence of the blockade of reverse transport by uptake inhibitors.  相似文献   

4.
The aim of this study was to investigate the effect of long-term treatment with interferon (IFN)-alpha on the noradrenaline transporter of bovine adrenal medullary cells. Treatment of cultured adrenal medullary cells with IFN-alpha caused a decrease in uptake of [3H]noradrenaline by the cells in time (4-48 h)- and concentration (300-1,000 U/ml)-dependent manners. IFN-beta also inhibited [3H]noradrenaline uptake to a lesser extent than did IFN-alpha, whereas IFN-gamma had little effect. An anti-IFN-alpha antibody reduced the effect of IFN-alpha on [3H]noradrenaline uptake. Saturation analysis of [3H]noradrenaline uptake showed that the inhibitory effect of IFN-alpha was due to a reduction in the maximal uptake velocity (Vmax) values without altering apparent Michaelis constant (Km) values. Incubation of cells with IFN-alpha caused a translocation of protein kinase C from the soluble to the particulate fraction in the cells. The effect of IFN-alpha on [3H]noradrenaline uptake was diminished in protein kinase C-down-regulated cells. Incubation of cells with IFN-alpha for 48 h significantly reduced the specific binding of [3H]desipramine to crude plasma membranes isolated from cells. Scatchard analysis of [3H]desipramine binding revealed that IFN-alpha decreased the maximal binding (Bmax) values without any change in the dissociation constant (K(D)) values. These findings suggest that IFN-alpha suppresses the function of noradrenaline transporter by reducing the density of the transporter in cell membranes through, at least in part, a protein kinase C pathway.  相似文献   

5.
1. Effects on 5-HT function of sibutramine and its active metabolites, BTS 54 354 and BTS 54 505, were compared with fluoxetine, (+)-fenfluramine and (+)-amphetamine. 2. In vitro sibutramine weakly inhibited [3H]-5-HT uptake into brain synaptosomes. BTS 54 354, BTS 54 505 and fluoxetine were powerful [3H]-5-HT uptake inhibitors, whereas (+)-fenfluramine and (+)-amphetamine were very much weaker. Conversely, whilst sibutramine, its metabolites and fluoxetine did not release [3H]-5-HT from brain slices at < or = 10(-5)M, (+)-fenfluramine and (+)-amphetamine concentration-dependently increased [3H]-5-HT release. 3. Sibutramine and fluoxetine had no effect on 5-hydroxytryptophan (5-HTP) accumulation in either frontal cortex or hypothalamus at doses < 10 mg kg(-1). In contrast, (+)-amphetamine ( > or = 3 mg kg(-1)) reduced 5-HTP in hypothalamus, whilst (+)-fenfluramine (> or =1 mg kg(-1)) decreased 5-HTP in both regions. 4. Sibutramine (10 mg kg(-1) i.p.) and fluoxetine (10 mg kg(-1) i.p.) produced slow, prolonged increases of extracellular 5-HT in the anterior hypothalamus. In contrast, (+)-fenfluramine (3 mg kg(-1) i.p.) and (+)-amphetamine (4 mg kg(-1) i.p.) induced rapid, short-lasting increases in extracellular 5-HT. 5. Only (+)-fenfluramine (10 mg kg(-1)) altered 5-HT2A receptors in rat frontal cortex when given for 14 days, producing a 61% reduction in receptor number and a 18% decrease in radioligand affinity. 6. These results show that sibutramine powerfully enhances central 5-HT function via its secondary and primary amine metabolites; this effect, like that of fluoxetine, is almost certainly mediated through 5-HT uptake inhibition. By contrast, (+)-fenfluramine enhances 5-HT function predominantly by increasing 5-HT release. (+)-Amphetamine, though weaker than (+)-fenfluramine, also enhances 5-HT function by release.  相似文献   

6.
Glycine displaces [3H]CGP-39653 ([3H]D,L-(E)-2-amino-4-propyl-5-phosphono-3-pentenoic acid) binding to the glutamate recognition site with both high and low affinity. We reported previously that chronic treatment with antidepressants reduced the proportion of high to low affinity sites, or, even eliminated the high affinity sites in case of citalopram. Here, we compared the effects of citalopram with another serotonin specific reuptake inhibitor, fluoxetine on this measure. Chronic administration of citalopram or fluoxetine eliminated high affinity glycine-displaceable [3H]CGP-39653 binding to the mouse cortex in 78 and 56% of animals, respectively, indicating that selective serotonin reuptake inhibitors produce qualitatively similar adaptive changes at NMDA receptors, that differ from other antidepressants in this neurochemical measure.  相似文献   

7.
The effect of acute and chronic desipramine (10 mg/kg) and citalopram (10 mg/kg) treatment on rat exploratory behavior in the recently developed exploration box test was studied on 5 consecutive days. Acute desipramine but not citalopram treatment decreased the time spent exploring, the number of line crossings, rears, investigative approaches, entries into the large arena, and sum of exploratory events. After 3 weeks of pretreatment, both desipramine and citalopram attenuated rat exploratory behavior, whereas the number of entries into the large arena was unchanged. In the open field test, acute desipramine or citalopram treatment (5, 10, 15 mg/kg) attenuated rat exploratory behavior in a dose-dependent manner. In the subsequent rota-rod test, neither desipramine nor citalopram treatment (0-20 mg/kg) impaired motor performance capacity. In an additional experiment, [3H]raclopride binding was unchanged after single as well as 3 weeks of desipramine or citalopram treatment in the rat brain neostriatum. Our experiments demonstrate that acute citalopram treatment in the open field test and chronic citalopram treatment in the exploration box test attenuate rat exploratory behavior, but these effects may not be implicated with enhanced anxiety or changed dopamine D2 receptor characteristics.  相似文献   

8.
We studied the effects of cotinine, the major metabolite of nicotine, on nicotine-induced increase in [3H]phorbol dibutyrate binding, activation of protein kinase C and [3H]noradrenaline release in primary cultured bovine adrenal chromaffin cells. Cotinine (1 mM, 15 min.) and nicotine (10 microM, 5 min.) increased the [3H]phorbol binding by 100% and 150%, respectively. Both a short-term (10 min.) and a long-term (24 hr) pretreatment with cotinine inhibited the effect of nicotine. A 24 hr pretreatment with cotinine (1 mM) also reduced the nicotine-induced increase in membrane-bound protein kinase C activity. Cotinine pretreatment (10 min.) dose-dependently inhibited the release of [3H]noradrenaline induced by nicotine and dimethylphenylpiperazinium. Cotinine pretreatment did not reduce the [3H]noradrenaline release induced by high extracellular potassium (56 mM) or veratrine (10 mg l-1). The results indicate that cotinine inhibits activation of protein kinase C and noradrenaline release induced by nicotinic agonists in primary cultures of bovine adrenal chromaffin cells. The results suggest that pre-existing cotinine could modify responses to acute exposure to nicotine in neural systems.  相似文献   

9.
The mydriatic response to alpha 1-adrenergic agonists was used as a functional index of postsynaptic alpha 1-adrenoceptors in mouse iris dilator muscle. Topical ocular application of methoxamine or phenylephrine caused dose-related mydriasis which was inhibited by pretreatment with prazosin or phentolamine. Chemical sympathectomy with topical 6-hydroxydopamine (6-OHDA) produced supersensitivity to phenylephrine but not methoxamine. Daily antidepressant treatment for 14 days with desipramine (10 mg/kg, i.p.), amitriptyline (10 mg/kg, i.p.), fluoxetine (2 mg/kg, i.p.), or moclobemide (40 mg/kg, i.p.) did not alter the response to methoxamine. Central alpha 1-adrenoceptors labelled with [3H]prazosin were similarly unaffected except for a modest downregulation produced by fluoxetine. These results demonstrate that postsynaptic alpha 1-adrenoceptors in mouse CNS and iris dilator muscle are refractory to manipulations known to alter their sensitivity in other tissues.  相似文献   

10.
The antipsychotic, zotepine, as well as possessing affinity for dopamine D1- and D2-1ike receptors, has high affinity for the noradrenaline (NA) transporter and inhibits [3H]NA uptake by rat frontal cortex synaptosomes, in vitro. The present studies investigated the effects of zotepine on extracellular NA in the frontal cortex of freely moving rats using in vivo microdialysis. Removal of calcium from the perfusate reduced extracellular NA by 70.5% and prevented the 50 mM KCl-stimulated increase in NA levels. Zotepine (0.5-1.5 mg kg(-1) i.p.), evoked biphasic, dose-dependent rises in extracellular NA with maximal increases observed at 60 min (+ 171.0%) and 240 min (+ 211.5%) post-treatment. The increases in NA levels were sustained for up to 100 min post-dosing. Clozapine (10.0 mg kg(-1) i.p.), resulted in a smaller, transient increase in NA levels (+ 72.0%) which lasted for 20 min post-treatment. Neither ziprasidone (3.0 mg kg(-1) i.p.) nor olanzapine (1.0 mg kg(-1) i.p.) influenced extracellular NA. Systemic treatment with the antidepressant desipramine (0.3 mg kg(-1) i.p.) resulted in a prolonged elevation of NA levels over 240 min (maximal increase of + 354.3%), whilst local infusion of nisoxetine (1-100 microM) through the dialysis probe increased NA levels in a concentration-dependent manner (up to 587.8% of control values). These data suggest that the inhibition of NA uptake by zotepine and its subsequent prolonged elevation of extracellular cortical NA may underlie the reported antidepressant properties of zotepine in schizophrenic patients.  相似文献   

11.
Quinine and quinidine are reported to potentiate the behavioural effects of serotonergic agents and monoamine uptake inhibitors. We have therefore investigated the presynaptic actions of quinine and quinidine on monoamine uptake and release in rat brain tissue in vitro. Quinidine evoked the release of [3H]5-HT, [3H]noradrenaline and [3H]dopamine from pre-loaded rat brain slices in a concentration dependent manner with EC50 values of 175, 486 and 150 microM, respectively. Quinine induced [3H]monoamine release with similar potencies. Both quinine and quinidine also inhibited the active uptake of [3H]5-HT, [3H]noradrenaline and [3H]dopamine into rat brain synaptosomes with IC50 values in the range 0.13-12.4 microM. The potency of each drug to inhibit [3H]5-HT uptake was significantly higher than that for [3H]noradrenaline or [3H]dopamine. The relative potency of quinidine compared to quinine was more marked in the case of [3H]5-HT (58-fold) than for [3H]noradrenaline (3-fold) or [3H]dopamine (4-fold). The inhibition of [3H]5-HT uptake by quinine and quinidine was competitive in nature and corresponded with the potencies of these drugs to inhibit [3H]paroxetine binding. No correlation was observed between the potencies of quinine and quinidine to induce the release of [3H]monoamines and to inhibit their uptake, suggesting that these effects are mediated by two distinct mechanisms. We conclude that the presynaptic actions of quinine and quinidine on monoamine uptake and release may be implicated in their potentiation of the effects of serotonergic agents and uptake blockers.  相似文献   

12.
The effects of continuous exposure of cultured cells expressing the human norepinephrine transporter (hNET) to the hNET inhibitor desipramine on hNET expression and function were studied. Exposure of HEK-293 cells transfected stably with the hNET cDNA (293-hNET cells) to desipramine for 3 days reduced the specific binding of [3H]nisoxetine in membrane homogenates in a concentration-dependent manner. The magnitude of the reductions in [3H]nisoxetine binding to hNET was dependent on the length of time of the exposure to desipramine, reaching 77% after a 21-day exposure. The reduction of [3H]nisoxetine binding returned to control levels within 72 h after a 3-day exposure to desipramine. Reductions in [3H]nisoxetine binding to hNET were accompanied by time-dependent and exposure concentration-dependent reductions in hNET protein levels as determined by western blotting. Similar to binding, hNET protein levels returned to control levels 72 h after cessation of desipramine exposure. Northern blotting indicated that exposure of 293-hNET cells to desipramine did not significantly alter hNET mRNA levels. Uptake of [3H]norepinephrine by 293-hNET cells was markedly reduced after a 3-day exposure to desipramine. However, desipramine exposure had no effect on uptake of [3H]glutamate or [3H]alanine. The present findings imply that down-regulation of the hNET in 293-hNET cells induced by desipramine results from a selective reduction in hNET protein levels, presumably a consequence of either a reduction in the translation of hNET mRNA or from an enhanced degradation of hNET protein.  相似文献   

13.
The aim of our study was to characterize functionally prejunctional neuropeptide Y (NPY) receptors in human and rabbit renal cortex, as well as in human right atrium. Segments of human atrial appendages and of human and rabbit renal cortex were preincubated with [3H]noradrenaline, superfused with Krebs-Henseleit solution and stimulated electrically in superfusion chambers. The stimulation-induced outflow of radioactivity was taken as an index of endogenous noradrenaline release. The effects of subtype-selective NPY analogs on the stimulation-induced noradrenaline release were studied. NPY, its endogenous analog, peptide YY, and its C-terminal fragment, NPY13-36, but not its analog, [Leu31,Pro34]NPY, concentration dependently (1-100 nM) inhibited [3H]noradrenaline release in all tissues studied. NPY-induced inhibition of [3H]noradrenaline release in human and rabbit kidney was abolished by pretreatment with pertussis toxin. We conclude that prejunctional inhibition of noradrenaline release in human heart and human and rabbit kidney occurs through NPY receptors of the Y2 subtype, which appear to couple to a pertussis toxin-sensitive G protein.  相似文献   

14.
The recently introduced antidepressants, the selective serotonin reuptake inhibitors (SSRIs) [citalopram, fluoxetine, fluvoxamine, paroxetine and sertraline], are known for their clinical efficacy, good tolerability and relative safety. They differ from each other in chemical structure, metabolism and pharmacokinetic properties. Therapeutic drug monitoring of these compounds is not widely used, as the plasma concentration ranges within which clinical response with minimal adverse effects appears to be optimal are not clearly defined. Almost all recent assays developed for the quantitative determination of SSRIs and their metabolites in blood are based either on the separation of SSRIs by high performance liquid chromatography (HPLC) or gas chromatography (GC). Citalopram and fluoxetine have been introduced as racemic compounds. There are some differences in the pharmacological profile, metabolism and pharmacokinetics between the enantiomers of the parent compounds and their demethylated metabolites. Stereoselective chromatographic methods for their analysis in blood are now available. With regard to the SSRIs presently available, no clearcut plasma concentration-clinical effectiveness relationship in patients with depression has been shown, nor any threshold which defines toxic concentrations. This may be explained by their low toxicity and use at dosages where serious adverse effects do not appear. SSRIs vary widely in their qualitative and quantitative interaction with cytochrome P450 (CYP) isozymes in the liver. CYP2D6 is inhibited by SSRIs, in order of decreasing potency paroxetine, norfluoxetine, fluoxetine, sertraline, citalopram and fluvoxamine. This may have clinical consequences with some but not all SSRIs, when they are taken with tricyclic antidepressants. Except for citalopram and paroxetine, little is known about the enzymes which control the biotransformation of the SSRIs. There have been many reports on marked pharmacokinetic interactions between fluoxetine and tricyclic antidepressants. Fluoxetine has a stronger effect on their hydroxylation than on their demethylation. Interactions observed between fluoxetine and alprazolam, midazolam and carbamazepine seem to occur on the level of CYP3A. Fluvoxamine strongly inhibits the N-demethylation of some tricyclic antidepressants of the tertiary amine type and of clozapine. This may lead to adverse effects but augmentation with fluvoxamine can also improve response in very rapid metabolisers, as it increases the bioavailability of the comedication. Fluvoxamine inhibits with decreasing potency, CYP1A2, CYP2C19, CYP2D6 and CYP1A1, but it is also an inhibitor of CYP3A. Fluoxetine and fluvoxamine have shown to increase methadone plasma concentrations in dependent patients. Some authors warn about a combination of monoamine oxidase (MAO) inhibitors with SSRIs, as this could lead to a serotonergic syndrome. Studies with healthy volunteers suggest, however, that a combination of moclobemide and SSRIs, such as fluvoxamine, should not present serious risks in promoting a serotonin syndrome. A combination of moclobemide and fluvoxamine has successfully been used in refractory depression, but more studies are needed, including plasma-concentration monitoring, before this combined treatment can be recommended. Paroxetine is a substrate of CYP2D6, but other enzyme(s) could also be involved. Its pharmacokinetics are linear in poor metabolisers of sparteine, and non-linear in extensive metabolisers. Due to its potent CYP2D6 inhibiting properties, comedication with this SSRI can lead to an increase of tricyclic antidepressants in plasma, as shown with amitriptyline and trimipramine. CYP3A has been claimed to be involved in the biotransformation of sertraline to norsertraline. Clinical investigations (with desipramine) confirmed in vitro findings that CYP2D6 inhibition by sertraline is only moderate. (ABSTRACT TRUNCATED)  相似文献   

15.
The effect of the Aconitum alkaloids aconitine, 3-acetylaconitine, lappaconitine, and N-desacetyllappaconitine to inhibit [3H]noradrenaline uptake was investigated in rat hippocampal synaptosomes. Aconitine and 3-acetylaconitine, which are known to activate sodium channels, had comparable inhibitory potencies and yielded Ki (inhibitor constant) values of 230 +/- 66 nM and 316 +/- 96 nM, respectively. In contrast, lappaconitine and N-desacetyllappaconitine failed to inhibit [3H]noradrenaline uptake. When either lappaconitine or N-desacetyllappaconitine was applied in combination with aconitine, [3H]noradrenaline uptake was not affected. The sodium channel blocker tetrodotoxin enhanced [3H]noradrenaline uptake, whereas uptake was completely blocked in sodium-free incubation medium. The inhibitory action of aconitine and 3-acetylaconitine on [3H]noradrenaline uptake was blocked by addition of tetrodotoxin. Patch clamp studies performed on cultured rat hippocampal neurons revealed an inhibitory action of lappaconitine and N-desacetyllappaconitine on whole cell sodium currents. It is concluded that the blockade of [3H]noradrenaline uptake evoked by aconitine and 3-acetylaconitine is mediated indirectly by an increased sodium concentration in the synaptosomes.  相似文献   

16.
1 The effects of mianserin and of selected tricyclic antidepressants were compared in a number of monoamine uptake models. 2 The ability of mianserin to block the noradrenergic neurone membrane amine pump of rabbit brain stem slices was comparable to that of imipramine and amitriptyline and less than that of desipramine and nortriptyline. Both mianserin and desipramine were competitive inhibitors of noradrenaline uptake in vitro. The effect of mianserin on noradrenaline uptake in vivo was studied both peripherally and centrally. The ability of 6-hydroxydopamine to lower rat heart noradrenaline levels was found to be very sensitive to inhibition by tricyclic antidepressants. Mianserin was active in this model. However, its ability to block the 6-hydroxydopamine-induced fall in rat heart noradrenaline concentration was appreciably less than that of the tricyclics studied. 3 Mianserin, like tricyclic antidepressants, was essentially devoid of effect on dopamine uptake both in vitro and in vivo. 4 The ability of mianserin to inhibit [3H]-5-hydroxytryptamine uptake by rat hypothalamic synaptosomes was appreciably less than that of the tricyclic antidepressants studied. Mianserin was essentially devoid of effect on rat brain 5-hydroxytryptamine uptake in vivo. 5 It is concluded that in certain situations large doses of mianserin may block noradrenaline uptake in vivo. However, in no way does mianserin rival tricyclic antidepressants in blocking monoamine uptake in vivo. The clinical efficacy of mianserin cannot be attributed to inhibition of monoamine uptake.  相似文献   

17.
The potential antidepressant properties of indeloxazine hydrochloride were examined in vitro and in vivo. Indeloxazine showed preferential affinity for both [3H] citalopram (Ki: 22.1 nM) and [3H]nisoxetine binding sites (Ki: 18.9 nM) in membranes of the rat cerebral cortex. In microdialysis studies, intraperitoneal injection of indeloxazine (3 and 10 mg/kg) dose-dependently increased the extracellular level of both serotonin and norepinephrine in rat frontal cortex of freely moving rats. Amitriptyline was almost equivalent to indeloxazine in these two assays with the exception of a much weaker effect on extracellular serotonin levels. Spontaneous [3H]serotonin release from rat cortical synaptosomes was significantly enhanced by indeloxazine (10-1000 nM). In behavioral studies, indeloxazine increased the number of wheel rotations in forced swimming tests in both ICR mice (50 mg/kg, p.o.) and SAMP8//YAN, a substrain of senescence-accelerated mouse (20 and 30 mg/kg, p.o.). Indeloxazine (3-10 mg/kg p.o.) also inhibited the incidence of muricide in raphe-lesioned rats. These results suggest that indeloxazine is an inhibitor of serotonin and norepinephrine uptake and has potential antidepressant properties. In addition, the drug-induced enhancement of serotonin release may contribute to its potent effects on the serotonergic system in vivo.  相似文献   

18.
The release of endogenous ATP, measured by the luciferin-luciferase assay, and of [3H]noradrenaline from the in vitro superfused rat hypothalamic slices were studied. ATP and [3H]noradrenaline were released simultaneously during resting conditions and in response to low and high frequency field electrical stimulation; the release of both substances were frequency dependent between 2 Hz and 16 Hz. The stimulation-induced release of ATP and [3H]noradrenaline was diminished by more than 80% under Ca2+-free conditions. Tetrodotoxin inhibited the majority of the evoked release of both ATP and [3H]noradrenaline, however, it was less effective in reducing the release of [3H]noradrenaline, than that of ATP. Bilateral stereotaxic injection of 6-hydroxydopamine (4 microg/side) to the ventral part of the ventral noradrenergic bundle, originating from the A1 cell group in the brainstem, resulted in a 55% reduction of endogenous noradrenaline content of the hypothalamic slices, and the tritium uptake and the stimulation-evoked release of [3H]noradrenaline was also markedly reduced. While the basal release of ATP was not affected, the evoked release was diminished by 72% by this treatment. Perfusion of the slices with noradrenaline (100 microM) initiated rapid and continuous tritium release; on the other hand, it did not release any ATP. In contrast, 6 min perfusion of (-)nicotine and 1,1-dimethyl-4-phenyl-piperazinium iodide evoked parallel release of ATP and [3H]noradrenaline which was inhibited by the nicotinic receptor antagonist mecamylamine; 6-hydroxydopamine lesion of the ventral part of the ventral noradrenergic bundle did not affect the nicotine-evoked ATP and [3H]noradrenaline release. While CH 38083, a non subtype-selective alpha2-antagonist and BRL44408, the subtype-selective alpha2AD antagonist augmented the evoked release of [3H]noradrenaline, ARC239, a selective alpha2BC antagonist was without effect. In contrast, neither of the alpha2-antagonists significantly affected the evoked-release of ATP. In summary, we report here that endogenous ATP and [3H]noradrenaline are co-released stimulation-dependently from superfused rat hypothalamic slices. A significant part of the release of both compounds is derived from the nerve terminals, originating from the A1 catecholaminergic cell group of brainstem nuclei. Unlike that from the peripheral sympathetic transmission, noradrenaline and alpha1-adrenoceptor agonists were unable to promote the release of ATP. Conversely, parallel ATP and noradrenaline release could be induced by nicotine receptor activation, but this release does not originate from the same nerve endings. The evoked-release of [3H]noradrenaline is inhibited by endogenous noradrenaline via alpha2AD subtype of adrenoreceptors, while the release of ATP is not subject to this autoinhibitory modulation. In conclusion, our results support the view that ATP is involved in the neurotransmission in the hypothalamus, but the sources of the released ATP and noradrenaline seem to be not identical under different stimulatory and modulatory conditions.  相似文献   

19.
We investigated the effects of nitric oxide (NO) donors, S-nitroso-N-acetylpenicillamine and sodium nitroprusside on basal and K+-evoked release of [3H]noradrenaline from superfused synaptosomes from the rat cerebral cortex. Both substances produced concentration-dependent increases in the release of the labeled transmitter under basal and depolarized conditions. The effects of the donors on basal release were Ca2+-independent but were not inhibited by the carrier-uptake blocker, desipramine; the effects were abolished by hemoglobin (an NO scavenger). Thirty-five minutes after stimulation with sodium nitroprusside, the synaptosomes were still responsive to KCl stimulation, indicating that the donor's effects were not caused by damage to the synaptosome membrane. The cGMP analogue, 8-bromo-cGMP, had no effect on basal release, and the enhanced release produced by sodium nitroprusside was not inhibited by the specific inhibitor of soluble guanylate cyclase, 1H-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one, indicating that NO's effects on basal release of the neurotransmitter are guanylate cyclase-independent. Both of the NO donors had more marked effects on release of [3H]noradrenaline during K+-stimulated depolarization. The NO-mediated increase in this case was partially antagonized by 10 microM LH-[1,2,4]oxadiazolo[4,3-alpha]quinoxalin-1-one, and 8-Br-cGMP was also capable of producing concentration-dependent increases in the K+-stimulated release of the transmitter. These findings indicate that the effects of the NO donors on [3H]noradrenaline release during depolarization are partially mediated by the activation of guanylate cyclase.  相似文献   

20.
The effects of the antiparkinsonian drugs budipine and biperiden on spontaneous and electrically evoked release of dopamine (DA), acetylcholine (ACh), GABA or noradrenaline (NA) were studied in caudate nucleus or cortex slices, respectively, of the rabbit brain. Whereas both drugs (1-10 microM) strongly increased spontaneous [3H]outflow in caudate nucleus slices preincubated with [3H]DA, budipine inhibited but biperiden facilitated the evoked DA release. In the presence of the DA-reuptake inhibitor nomifensine, a significant part of the budipine-induced basal [3H] outflow consisted of unmetabolized DA. Synaptosomal high-affinity uptake of [3H]DA was only weakly affected by budipine and biperiden (IC50 values, 11 and 9 microM, respectively). Budipine enhanced also basal [3H]outflow from cortex slices prelabeled with [3H]NA, however this outflow consisted mainly of NA metabolites even in the presence of cocaine. The evoked release of [3H]ACh in rabbit caudate nucleus slices preincubated with [3H] choline was almost unaffected by budipine but enhanced by biperiden in the absence of further drugs. In the presence of nomifensine, however, budipine inhibited, but biperiden still enhanced, the evoked ACh release. Moreover, both drugs showed antimuscarinic properties in the presence of the ACh esterase inhibitor physostigmine, i.e., they facilitated the evoked ACh release, exhibiting pA2 values of about 6.9 (budipine) and 8.3 (biperiden). Addition of the D2 receptor antagonist domperidone diminished all inhibitory effects of budipine on the evoked ACh release. The evoked overflow of [3H] in caudate nucleus slices preincubated with [3H]GABA was reduced by both budipine and biperiden. It is concluded that both anticholinergic and indirect dopaminomimetic properties contribute to the antiparkinsonian effects of budipine, whereas biperiden exhibits mainly anticholinergic effects. Moreover, both drugs might disinhibit GABA controlled neurons in the central nervous system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号