首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although interferon-alpha (IFN-alpha) has proved beneficial in the treatment of some tumors, the basis for this is still uncertain. In this study, we examined the effects of IFN-alpha on the growth of tumor cells in vitro, using the Daudi line of B lymphoma cells as a model. There was a dose-dependent accumulation of these cells in the G1 phase of the cell cycle 24-48 h from the time of exposure to IFN-alpha. This was followed between 48 h and 96 h by an increasing degree of apoptosis, as assessed by cell survival, propidium iodine staining, and transmission electron microscopy. Concomitantly with the apoptosis, there was the appearance of pl8 Bax-alpha, an apparently novel variant low molecular weight form of the p21 Bax-alpha found in normal cells. There was also a slight diminution in Bcl-xL, with a resultant drop in the Bcl-xL:Bax-alpha ratio. Treatment of cells with CD40-L partially inhibited the development of apoptosis in response to IFN-alpha. At the same time, generation of p18 Bax-alpha was reduced, which suggests that this plays a part in the apoptotic process. These findings may throw light on the development of lymphomas and perhaps point to future ways of improving therapy with IFN-alpha.  相似文献   

2.
Previous studies demonstrated that nanomolar concentrations of nocodazole can block cells in mitosis without net microtubule disassembly and resulted in the hypothesis that this block was due to a nocodazole-induced stabilization of microtubules. We tested this hypothesis by examining the effects of nanomolar concentrations of nocodazole on microtubule dynamic instability in interphase cells and in vitro with purified brain tubulin. Newt lung epithelial cell microtubules were visualized by video-enhanced differential interference contrast microscopy and cells were perfused with solutions of nocodazole ranging in concentration from 4 to 400 nM. Microtubules showed a loss of the two-state behavior typical of dynamic instability as evidenced by the addition of a third state where they exhibited little net change in length (a paused state). Nocodazole perfusion also resulted in slower elongation and shortening velocities, increased catastrophe, and an overall decrease in microtubule turnover. Experiments performed on BSC-1 cells that were microinjected with rhodamine-labeled tubulin, incubated in nocodazole for 1 h, and visualized by using low-light-level fluorescence microscopy showed similar results except that nocodazole-treated BSC-1 cells showed a decrease in catastrophe. To gain insight into possible mechanisms responsible for changes in dynamic instability, we examined the effects of 4 nM to 12 microM nocodazole on the assembly of purified tubulin from axoneme seeds. At both microtubule plus and minus ends, perfusion with nocodazole resulted in a dose-dependent decrease in elongation and shortening velocities, increase in pause duration and catastrophe frequency, and decrease in rescue frequency. These effects, which result in an overall decrease in microtubule turnover after nocodazole treatment, suggest that the mitotic block observed is due to a reduction in microtubule dynamic turnover. In addition, the in vitro results are similar to the effects of increasing concentrations of GDP-tubulin (TuD) subunits on microtubule assembly. Given that nocodazole increases tubulin GTPase activity, we propose that nocodazole acts by generating TuD subunits that then alter dynamic instability.  相似文献   

3.
The effect of nitric oxide (NO) exposure and sulfhydryl-reactive chemicals on L-arginine transport in pulmonary artery endothelial cells was evaluated. Exposure of pulmonary artery endothelial cells to 7.5 ppm (0.4 microM) NO for 4 h resulted in a significant (p < 0.05) reduction of Na(+)-dependent but not Na(+)-independent L-arginine transport. More prolonged exposure for 12-24 h reduced both Na(+)-dependent and Na(+)-independent transport of L-arginine with maximal loss of transport after 18 h of exposure (p < 0.02 for both). Similarly, incubation of cells in the presence of 50-200 microM S-nitroso-acetyl-penicillamine (SNAP) (but not 500 microM each of nitrate or nitrite) for 2 h also reduced both the Na(+)-dependent and Na(+)-independent transport of L-arginine (p < 0.05 for all concentrations). The SNAP-induced reduction of L-arginine transport was blocked by the NO scavenger oxyhemoglobin. When cell monolayers were exposed to varying concentrations of the sulfhydryl reactive chemicals N-ethylmaleimide (NEM) and acrolein, a dose-dependent reduction of L-arginine transport by both Na(+)-dependent and Na(+)-independent processes was observed. Na(+)-dependent L-arginine transport was more susceptible to inhibition by exposure to NO and to sulfhydryl reactive chemicals. Incubation of cells with 0.5 mM of the thiol-containing agent N-acetyl-L-cysteine prior to and during NEM or acrolein exposure blocked NEM and acrolein-induced reduction of L-arginine transport by both Na(+)-dependent and Na(+)-independent processes. Similarly, NO-induced reductions of Na(+)-dependent and Na(+)-independent L-arginine transport were reversed to control levels 24 h after termination of NO exposure. Treatment with the disulfide reducing agent dithiothreitol after exposure to NO resulted in partial reversal of the decreases in L-arginine transport. These results demonstrate that exposure to exogenous NO is responsible for reversible reductions of plasma membrane-dependent L-arginine transport mediated by both the Na(+)-dependent (system Bo,+) and the Na(+)-independent (system y+) transport processes. Modulation of the sulfhydryl status of plasma membrane proteins involved in L-arginine transport, such as L-arginine transporters and/or Na+/K(+)-ATPase, may be responsible, at least in part, for reductions in overall L-arginine transport in pulmonary artery endothelial cells.  相似文献   

4.
5.
We measured the endocytic uptake of low-density lipoproteins (LDLs) conjugated to colloidal gold in cultured cells, either by counting gold particles on electron micrographs or by inductively coupled plasma (ICP) mass spectrometry (MS). Both procedures are comparable but the latter requires a considerably shorter time and allows analysis of a much larger sample. In addition, ICP MS, compared to alternative radioactive or fluorescent procedures, offers the major advantage of using the same probe to quantify the endocytic uptake and to follow it by electron microscopy. Therefore, ICP MS analysis provides an easy, rapid, and sensitive quantification of endocytosis that complements the electron microscopic studies.  相似文献   

6.
Estramustine is an estradiol-based agent that has been shown to accumulate in human glioma cells, resulting in a concentration-dependent alteration in cell size and shape within minutes and an inhibition of proliferation over 3 to 6 days. We evaluated human glioblastoma cultures with [3H]thymidine incorporation assays to determine estramustine's early effects on deoxyribonucleic acid synthesis in these tumors. Because estramustine shares a common structural motif with other antimicrotubule drugs, we synthesized four A-ring conjugates of estrone that contained a carbamate moiety but lacked nitrogen mustard. These analogs were examined by [3H]thymidine incorporation and compared with vinblastine. Greater than 70% inhibition of [3H]thymidine incorporation occurred within 1 hour of treatment with estramustine at 10(-5) mol/L, which increased to 80% inhibition at 4 hours. Ethyl carbamate JE208 was nearly as effective as estramustine in inhibiting deoxyribonucleic acid synthesis, and both were more effective than vinblastine. The inhibitory effects of estramustine and estrone analogs were reversible; vinblastine was not reversible. Although estramustine and JE208 induced similar antiproliferative and morphological changes in glioblastoma cells that persisted for at least 4 days, there was a modest recovery of morphology and thymidine incorporation with JE208 after prolonged treatment. The common findings with estramustine and JE208 suggest that these agents may have a similar mechanism of action and form the basis for the investigation of new agents that may rapidly and reversibly inhibit glioblastoma.  相似文献   

7.
The influence of low or high (10 or 25 mM) K(+)-induced membrane depolarization on the mRNA levels for NMDA receptor subunits was investigated by RNase protection assay in cultured rat cerebellar granule cells. Cells, maintained for 7 days in K25+, a condition that promotes their survival and maturation, express the highest levels of NR-1 and NR-2A mRNA, whereas NR-2B is maximally expressed in cells grown in K10+. Acute changes in medium K+ concentration had a significant effect on the mRNA levels for NMDA receptor subunits. A concomitant reduction of NR-2A mRNA and induction of NR-2B was observed following a 24-h shift of the culture medium from K25+ to K10+. Under these circumstances NR-2C, not detected in basal conditions, became expressed. Neuronal nitric oxide synthase, an enzyme linked to NMDA receptor activation, was also influenced by growth conditions. Its expression, higher under low excitation (K10+), is induced in the shift from K25+ to K10+ and is markedly decreased in the opposite situation. These data indicate that several factors may influence the expression of NMDA receptor subunits and consequently may modulate the function of this receptor complex and its adaptation to acute and chronic changes in neuronal activity.  相似文献   

8.
There is currently no effective therapy for human prion diseases. However, several polyanionic glycans, including pentosan sulfate and dextran sulfate, prolong the incubation time of scrapie in rodents, and inhibit the production of the scrapie isoform of the prion protein (PrPSc), the major component of infectious prions, in cultured neuroblastoma cells. We report here that pentosan sulfate and related compounds rapidly and dramatically reduce the amount of PrPC, the non-infectious precursor of PrPSc, present on the cell surface. This effect results primarily from the ability of these agents to stimulate endocytosis of PrPC, thereby causing a redistribution of the protein from the plasma membrane to the cell interior. Pentosan sulfate also causes a change in the ultrastructural localization of PrPC, such that a portion of the protein molecules are shifted into late endosomes and/or lysosomes. In addition, we demonstrate, using PrP-containing bacterial fusion proteins, that cultured cells express saturable and specific surface binding sites for PrP, many of which are glycosaminoglycan molecules. Our results raise the possibility that sulfated glycans inhibit prion production by altering the cellular localization of PrPC precursor, and they indicate that endogenous proteoglycans are likely to play an important role in the cellular metabolism of both PrPC and PrPSc.  相似文献   

9.
The involvement of various brain regions in lordosis and ear-wiggling, which resemble components of adult female sexual behavior, was examined by making acute transections along the neuraxis from the olfactory tract to the medulla in 6-day-old rats. Four to 5 hrs after the transection procedure, pups were tested for lordosis and ear wiggling. Lordosis was reduced or eliminated in pups with cuts through the hindbrain or diencephalon (above the level of the mammillary bodies) but was relatively unaffected by cuts through the posterior hypothalamus and rostral tegmentum and by cuts rostral to the anterior hypothalamus. Ear wiggling was disrupted by transections throughout the hindbrain and was facilitated only in females by transections throughout the forebrain (anterior to the mammillary bodies). Data suggest that facilitation from the hypothalamus is required for lordosis in the infant rat and the forebrain inhibitory systems for ear wiggling are functional in female infants by 6 days of age. Similarities and differences between the neural control of lordosis and ear wiggling in infant and adult rats suggest that the infant sex-like behaviors may be precursors of adult female sexual behavior. (PsycINFO Database Record (c) 2010 APA, all rights reserved)  相似文献   

10.
We studied the effects of nitric oxide (NO) on prostanoid production, cyclooxygenase (COX-2) expression and [3H]arachidonic acid (AA) release in RAW 264.7 macrophagic cells and rat microglial primary cultures. Inhibition of NO synthesis enhanced microglial prostanoid production without affecting that of RAW 264.7 cells. Both 3-morpholinosydnonimine (SIN-1), (which, by releasing NO and superoxide, leads to the formation of peroxynitrite), and S-nitroso-N-acetylpenicillamine (SNAP), (which releases only NO), inhibited microglial prostanoid production, by preventing COX-2 expression. In contrast, in RAW 264.7 cells, SIN-1 enhanced both basal and LPS-stimulated prostanoid production by upregulating COX-2, while SNAP stimulated basal production and slightly inhibited the LPS-induced production, as a cumulative result of enhanced AA release and depressed COX-2 expression. Thus, reactive nitrogen intermediates can influence prostanoid production at distinct levels and in different way in the two cell types, and results obtained with RAW 264.7 cells can not be extrapolated to microglia.  相似文献   

11.
Three juvenile patients with cerebellar astrocytomas which have seeded the spinal subarachnoid space are presented. Histologic verification of the similarity between the posterior fossa tumor and its spinal implant was obtained in two of the three patients. The cerebellar tumors in all cases have been benign (grade I),and the behavior, other than their seeding has also been indolent. Review of pertinent literature discloses no similar experience with cerebellar astrocytomas. Aggressive therapy is advocated for the rare patient with subarachnoid seeding from this benign lesion.  相似文献   

12.
For monoclonal antibody therapeutics to access target antigen in extravascular compartments, an antibody drug delivery technology is required that has the dual properties of 1) transendothelial migration of the antibody and 2) endocytosis of the antibody into the target cell. These two objectives may be achieved with antibody cationization, and the present studies examine the feasibility of cationizing the humanized 4D5 monoclonal antibody directed against the p185HER2 oncogenic protein. The cationized antibody binds to the p185HER2 extracellular domain with an ED50 of 35 micrograms/ml and inhibits SK-BR3 cell proliferation similar to the native antibody. Confocal microscopy showed that although there was binding of the native 4D5 antibody to the plasma membrane of SK-BR3 cells, this antibody was confined to the periplasma membrane space with minimal endocytosis into the cell. In contrast, robust internalization of the cationized 4D5 antibody by the SK-BR3 cells was demonstrated by confocal microscopy. The systemic volume of distribution of the cationized 4D5 antibody was 11-fold greater than that of the native antibody. In summary, these studies show that a humanized monoclonal antibody may be cationized with retention of antibody affinity for the target antigen and biological activity, yet with a marked alteration in the cellular distribution and pharmacokinetics in vivo.  相似文献   

13.
BACKGROUND: Halothane is a potent dilator of cerebral arteries. The predominant site of cerebrovascular resistance is thought to be intracerebral arterioles, and the effects of halothane on these vessels were not previously examined. This study compared the effects of halothane with those of the vasodilator and nitric oxide donor, sodium nitroprusside, on intraparenchymal microvessel responsiveness in a brain slice preparation. METHODS: Anesthetized Sprague-Dawley rats underwent thoracotomy and intracardiac perfusion and then were decapitated. Hippocampal brain slices were prepared and placed in a perfusion/recording chamber and superfused with artificial cerebrospinal fluid. An arteriole was located within the brain parenchyma and its diameter was monitored with videomicroscopy before, during, and after various concentrations of halothane or sodium nitroprusside were equilibrated in the perfusate. All vessels were preconstricted with prostaglandin F2 alpha before halothane or sodium nitroprusside treatment. An observer blinded to treatment analyzed vessel diameter changes with a computerized videomicrometer. RESULTS: Baseline microvessel diameter was 18 +/- 2 microns in the halothane group (n = 14) and 15 +/- 1 microns in the sodium nitroprusside group (n = 15). Prostaglandin F2 alpha (0.5 micron) preconstricted vessels by approximately 15% from resting diameter in both groups. Halothane significantly and dose dependently dilated intracerebral microvessels by 54% +/- 6%, 74% +/- 8%, 108% +/- 13%, and 132% +/- 7% (normalized to the preconstricted diameter) at 0.5%, 1.0%, and 2.5% halothane, respectively. This dilatation corresponds to a decrease in a calculated index of cerebrovascular resistance index of up to 117% +/- 2% at 2.5% halothane. Sodium nitroprusside, in concentrations ranging from 10(-8) to 10(-3)M, also dose dependently dilated these intraparenchymal vessels by 129% +/- 7% at the highest concentration. These alterations in microvessel diameter corresponded to a decrease in the cerebrovascular resistance index of up to 116 +/- 4% for the largest dose. CONCLUSIONS: Halothane produces dose-dependent vasodilatation of intraparenchymal cerebral microvessels, thus predicting marked decreases in cerebrovascular resistance in this in vitro brain slice preparation. The effects of halothane on these cerebral microvessels are similar to those of the potent vasodilator sodium nitroprusside. These findings suggest that direct effects of halathane on cerebral microvessels diameter contribute substantially to alterations in cerebrovascular resistance and flow produced by this agent.  相似文献   

14.
OBJECTIVE: We investigated whether patient-centered communication skills can be taught to residents in Internal Medicine by using a time-limited behaviorally oriented intervention. METHOD: Residents working at the Department of Internal Medicine were randomly assigned to an intervention group (IG; N = 19) or a control group (CG; N = 23). In addition to 6 hours of standard medical education per week, the IG received specific communication training of 22.5 hours duration within a 6-month period. Initially and 10 months later, participants performed interviews with simulated patients. Interviews were rated by blinded raters who used the Maastricht History and Advice Checklist-Revised. RESULTS: Compared with the CG, the IG improved substantially in many specific communication skills. Both groups improved in the "amount of medical information identified" and in the ability to "communicate about feasibility of treatment." CONCLUSION: Patient-centered communication skills such as those presented in this intervention study can be taught. The ability to gain medical information and the readiness to communicate about aspects of medical treatment seem to improve with more professional experience; however, they also profit from the intervention.  相似文献   

15.
Many alkaloid drugs used as analgesics activate multiple opioid receptors. Mechanisms that distinguish the actions of these drugs on the regulation of individual micro, delta, and kappa receptors are not understood. We have observed that individual cloned opioid receptors differ significantly in their regulation by rapid endocytosis in the presence of alkaloid drug etorphine, a potent agonist of mu, delta, and kappa opioid receptors. Internalization of epitope-tagged delta opioid receptors from the plasma membrane is detectable within 10 min in the presence of etorphine. In contrast, kappa receptors expressed in the same cells remain in the plasma membrane and are not internalized for >/=60 min, even when cells are exposed to saturating concentrations of etorphine. The rapid internalization of delta receptors is specifically inhibited in cells expressing K44E mutant dynamin I, suggesting that type-specific internalization of opioid receptors is mediated by clathrin-coated pits. Examination of a series of chimeric mutant kappa/delta receptors indicates that at least two receptor domains, including the highly divergent carboxyl-terminal cytoplasmic tail, determine the type specificity of this endocytic mechanism. We conclude that structurally homologous opioid receptors are differentially sorted by clathrin-mediated endocytosis following activation by the same agonist ligand. These studies identify a fundamental mechanism of receptor regulation mediating type-specific effects of analgesic drugs that activate more than one type of opioid receptor.  相似文献   

16.
pp120, a substrate of the insulin receptor tyrosine kinase, is a plasma membrane glycoprotein that is expressed in the hepatocyte as two spliced isoforms differing by the presence (full-length) or absence (truncated) of most of the intracellular domain including all phosphorylation sites. Co-expression of full-length pp120, but not its phosphorylation-defective isoforms, increased receptor-mediated insulin endocytosis and degradation in NIH 3T3 fibroblasts. We, herein, examined whether internalization of pp120 is required to mediate its effect on insulin endocytosis. The amount of full-length pp120 expressed at the cell surface membrane, as measured by biotin labeling, markedly decreased in response to insulin only when insulin receptors were co-expressed. In contrast, when phosphorylation-defective pp120 mutants were co-expressed, the amount of pp120 expressed at the cell surface did not decrease in response to insulin. Indirect immunofluorescence analysis revealed that upon insulin treatment of cells co-expressing insulin receptors, full-length, but not truncated, pp120 co-localized with alpha-adaptin in the adaptor protein complex that anchors endocytosed proteins to clathrin-coated pits. This suggests that full-length pp120 is part of a complex of proteins required for receptor-mediated insulin endocytosis and that formation of this complex is regulated by insulin-induced pp120 phosphorylation by the receptor tyrosine kinase. In vitro GST binding assays and co-immunoprecipitation experiments in intact cells further revealed that pp120 did not bind directly to the insulin receptor and that its association with the receptor may be mediated by other cellular proteins.  相似文献   

17.
Bafilomycin A1 (baf), a specific inhibitor of vacuolar proton ATPases, is commonly employed to demonstrate the requirement of low endosomal pH for viral uncoating. However, in certain cell types baf also affects the transport of endocytosed material from early to late endocytic compartments. To characterize the endocytic route in HeLa cells that are frequently used to study early events in viral infection, we used 35S-labeled human rhinovirus serotype 2 (HRV2) together with various fluid-phase markers. These virions are taken up via receptor-mediated endocytosis and undergo a conformational change to C-antigenic particles at a pH of <5.6, resulting in release of the genomic RNA and ultimately in infection (E. Prchla, E. Kuechler, D. Blaas, and R. Fuchs, J. Virol. 68:3713-3723, 1994). As revealed by fluorescence microscopy and subcellular fractionation of microsomes by free-flow electrophoresis (FFE), baf arrests the transport of all markers in early endosomes. In contrast, the microtubule-disrupting agent nocodazole was found to inhibit transport by accumulating marker in endosomal carrier vesicles (ECV), a compartment intermediate between early and late endosomes. Accordingly, lysosomal degradation of HRV2 was suppressed, whereas its conformational change and infectivity remained unaffected by this drug. Analysis of the subcellular distribution of HRV2 and fluid-phase markers in the presence of nocodazole by FFE revealed no difference from the control incubation in the absence of nocodazole. ECV and late endosomes thus have identical electrophoretic mobilities, and intraluminal pHs of <5.6 and allow uncoating of HRV2. As bafilomycin not only dissipates the low endosomal pH but also blocks transport from early to late endosomes in HeLa cells, its inhibitory effect on viral infection could in part also be attributed to trapping of virus in early endosomes which might lack components essential for uncoating. Consequently, inhibition of viral uncoating by bafilomycin cannot be taken to indicate a low pH requirement only.  相似文献   

18.
Y Kohjimoto  S Ebisuno  M Tamura  T Ohkawa 《Canadian Metallurgical Quarterly》1996,10(2):459-68; discussion 468-70
The present investigation was designed to study interactions between Madin-Darby canine kidney (MDCK) cells and calcium oxalate monohydrate (COM) crystals and to clarify the significance of these crystal-cell interactions in stone pathogenesis. MDCK cells cultured in the presence of COM crystals showed a time-dependent uptake of crystals; this was specific for COM crystals. In the dynamic model system designed to study these phenomena under more physiological conditions, COM crystals adhered to the cell surface and were subsequently internalized. In this endocytotic process, the microvilli of the cell appeared to play an important role. The observation by scanning electron microscopy of complexes consisting of aggregated COM crystals and cell debris led us to speculate that adhesion and endocytosis of crystals might provide the calculus nidus for aggregation and retention of crystals in the renal tubule. Furthermore, glycosaminoglycans and the macromolecular fraction of human urine were shown to have the ability to inhibit the cellular uptake of crystals. Evidence that similar processes may also occur in vivo was obtained using an experimental stone model in rats. Our experiments revealed that most of the COM crystals adhered to the tubular cells and some crystals were endocytosed by the cell. Thus, these crystal-cell interactions might be one of the earliest processes in the formation of kidney stones. Further elucidation of the mechanism and the regulatory factors involved in this process may provide new insight into stone pathogenesis.  相似文献   

19.
BACKGROUND/AIMS: The transferrin receptor is a prominent protein on the basal and lateral membranes of intestinal epithelial cells, yet little is known of the function of the receptor in the intestine. The aim of the present study was to determine whether intestinal transferrin receptors were capable of facilitating transferrin internalization. METHODS: Using the rat as an experimental model, the uptake of radiolabeled transferrin by cells isolated from different regions along the crypt-villus axis of the proximal small intestine was studied. RESULTS: An intestinal epithelial cell fraction highly enriched in crypt cells bound most radiolabeled transferrin. Cells in this fraction were able to internalize transferrin and recycle it back to the cell surface. A high affinity, saturable pathway of transferrin uptake by these cells predominated at transferrin concentrations below 0.3 mumol/L, whereas at higher concentrations, most uptake was via a nonsaturable process. Intravenously injected radiolabeled transferrin could be detected within intestinal crypt cells, indicating that these cells are able to internalize transferrin in vivo. CONCLUSIONS: These data suggest that intestinal crypt cells have an active transferrin/transferrin receptor system. Transferrin may play an important role in iron delivery to and/or as a growth factor for the rapidly proliferating intestinal epithelium.  相似文献   

20.
Microtubules (MTs) contribute to the directional locomotion of many cell types through an unknown mechanism. Previously, we showed that low concentrations (<200 nM) of nocodazole or taxol reduced the rate of locomotion of NRK fibroblasts over 60% without altering MT polymer level [Liao et al., 1995: J. Cell Sci. 108:3473-3483]. In this paper, we directly measured the dynamics of MTs in migrating NRK cells injected with rhodamine tubulin and treated with low concentrations of nocodazole or taxol. Both drug treatments caused statistically significant reductions (approx. twofold) in growth and shortening rates and less dramatic effects on rescue and catastrophe transition frequencies. The percent time MTs were inactive (i.e., paused) increased greater than twofold in nocodazole- and taxol-treated cells, while the percent time growing was substantially reduced. Three parameters of MT dynamics were linearly related to the rates of locomotion determined previously: rate of shortening, percent time pausing and percent time growing. The number of MTs that came within 1 microm of the leading edge was reduced in drug-treated cells, suggesting that reduced MT dynamics may affect actin arrays necessary for cell locomotion. We examined two such structures, lamellipodium and adhesion plaques, and found that lamellipodia area was coordinately reduced with MT dynamics. No effect was detected on adhesion plaque density or distribution. In time-lapse recordings, MTs did not penetrate into the lamellipodium of untreated cells, suggesting that MTs affect lamellipodia either through their interaction with factors at the base of the lamellipodium or by releasing factors that diffuse into the lamellipodia. In support of the latter hypothesis, when all MTs were rapidly depolymerized by 20 microM nocodazole, we detected the rapid formation of exaggerated protrusions from the leading edge of the cell. Our results show for the first time a linear relationship between MT dynamics and the formation of the lamellipodium and support the idea that MT dynamics may contribute to cell locomotion by regulating the size of the lamellipodium, perhaps through diffusable factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号