首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Study on mechanical properties of warm compacted iron-base materials   总被引:9,自引:0,他引:9  
Mechanical properties of the warm compacted iron-base powder metallurgy materials were compared with those of conventional cold compacted materials. Factors such as compaction temperature, lubricant concentration and lubricant′s property were studied. A lubricant for warm compaction powder metallurgy was developed. An iron-based powder metallurgy material with a green density of 7.31 g/cm3 (a relative density of 92.5%) can be obtained by pressing the powder at 700 MPa and 175 ℃. The sintered materials have a density of 7.2 g/cm3, an elongation of 2.1% and a tensile strength of 751 MPa compared to 546 MPa using conventional cold compaction with the same lubricant and 655 MPa using warm compaction with other lubricant. Compact density and mechanical properties were influenced strongly by the compacting temperature. Although the best quality compacts can be obtained at 175 ℃, warm compaction within 165 to 185 ℃ can give high density compacts. Evidence shows that compact density depends on the friction coefficient of the lubricant.  相似文献   

2.
Warmcompactionhasbeenpaidmuchattention[1 8] tosincehigherdensityferrousP Mpartscanbefabricatedatrelativelylowercost.Itiscommonlyacceptedthatthegainingreendensi tyisattributedtoloweringtheresistancetopress ingduetoslowerworkhardeningrateandlesse nessinyiel…  相似文献   

3.
In order to achieve higher density of P/M steels using the die wall lubrication compacting method or powder lubricant in warm compaction process, the influence of different process parameters on the green density of warm compacted samples was studied. According to the orthogonal test method, the authors systematically study the influence of the different compaction pressure, condition of lubrication and compaction temperature on the green density of the sample in the warm compaction process, and put forward the optimal process parameter of warm compaction experiment. It is found that, a high compaction pressure (≥700 MPa), die wall lubrication combined with a small amount of internal lubricants, and fitting compaction temperature by different condition of lubrication, are the optimal parameters in warm compaction process.  相似文献   

4.
The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07 - 0. 22 g/cm^3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm^3 at 120℃, and the maximum sintered density is 7.18 g/cm^3 at 80℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrep- ancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.  相似文献   

5.
Phenomenological Modeling of Warm Compaction and Experimental Verification   总被引:2,自引:0,他引:2  
A phenomenological modeling approach to establishing the warm compaction equation and curves by modifying the regression equation of the room-temperature compaction curve is presented. An enhanced factor of compacting pressure is introduced into the equation in order to reveal the effects of powder/die temperature and filling height of powders on green density. Compaction curves yielded from this equation are consistent with the experimental data of ATOMET grade iron powders. The curves show that the powder/die temperature should reduce as the filling heights of powders increase and that in some cases warm compaction can not give rise to a higher green density.  相似文献   

6.
0 BackgroundWarmcompactiontechniquehasbeenreceivedmuchattentionsinceitwasinitiallyproposedbytheHoganasCorporationinUSintheearlyof 1990′s[1~ 5].Itiswell knownthatthistechniquecanofferaneconomicalroutineforattaininghigherdensitiescomparedwiththeconven tionalo…  相似文献   

7.
The phenomena of die wall lubricated warm compaction of non-lubricant admixed iron powders were researched, and its mechanism of densification was discussed. Water atomized powder obtained from the Wuhan Iron and Steel Corporation was used. With compacting and sintering, compared with cold compaction, the density of warm compacted samples increases by 0.07-0.22 g/cm 3 at the same pressed pressure. The maximum achievable green density of warm compacted samples is 7.12 g/cm 3 at 120 ℃, and the maximum sintered density is 7.18 g/cm 3 at 80 ℃. Compared with cold compaction, the ejection force of warm compaction is smaller; the maximum discrepancy is about 7 kN. The warm compacted mechanism of densification of iron powders can be obtained: heating the powder contributes to improving plastic deformation of powder particles, and accelerating the mutual filling and rearrangement of powder particles.  相似文献   

8.
利用机械活化-放电等离子烧结的方法,将Fe-Al-Al2O3粉末经机械活化后快速烧结,得到致密且晶粒细小的FeAl/Al2O3块体复合材料.研究表明,在w(球)∶w(粉)=13∶1、转速170 r/min、球磨时间25 h的球磨参数下,粉体中的纳米级Al2O3颗粒,在细化和活化Fe、Al金属粉末的同时,还能有效地阻止金属粉末在烧结前合金化生成金属间化合物.在烧结压力40 MPa、烧结温度1050℃、加热时间15 min、保温时间10min的烧结参数下,制备的FeAl/Al2O3复合材料的致密度可达96.4%.  相似文献   

9.
Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained MgESi phase with fully relative density.  相似文献   

10.
The green and sintered densities,and tensile strength of sintered P/M steels produced by cold compaction,warm compaction,warm compaction combined with die wall lubrication(DWL)were measured under various compaction pressures using polytetrafluoroethylene(PTFE)emulsion as the die wall lubricant.The effects of warm compaction on the mechanical properties were studied.The tensile fracture behaviors of cold compaction and warm compaction were studied using scanning electron microscope(SEM).The results show that the density of sintered P/M steel prepared by warm compaction or warm compaction with DWL is higher than that by cold compaction under all compaction pressures.Meanwhile,the highest tensile strength is obtained by combination of warm compaction and die wall lubrication under all compaction pressures.The SEM results show that the fracture modes of the sintered samples prepared by cold compaction and warm compaction at 700 MPa are the mixed mode of ductile fracture and brittle fracture,and obvious dimples can be found in some regions.The fracture of sample prepared by cold compaction is uneven and has irregular and big pores,but that by warm compaction is relatively even and the pores are round mostly,and the samples have many obvious dimples on the whole fracture surface.  相似文献   

11.
In the current work hydroxyapatite Ca10(PO4)6 ·OH2(HA) was sintered with the addition of 3 wt% aluminum isopropoxide(C9H21AlO3) powder and 3 wt % Teflon powder(-C2 F2-). Sample was prepared by following sol-gel technique. Obtained pellets of samples were sintered. For investigation of effects of temperature on microstructures and mechanical properties the samples were sintered at various temperatures. For studying the phase composition, microstructures and elemental analysis the sintered samples were characterized by X-rays diffraction(XRD), scanning electron microscopy(SEM) and energy dispersive X-rays diffraction(EDAX) respectively. After sintering the samples mechanical properties, i e, grains size, apparent density, Vickers hardness, bending strength and compressive strength were found to be 2.14-18.76 μm, 1.523 6-0.752 g/cm3, 3.60-0.600 GPa and bending strength 33.265 8-14.900 MPa, 75-33 MPa, respectively. As a result of sintering fluoridated composite material was obtained.  相似文献   

12.
以镁粉和造孔剂碳酸氢铵为主要原料,采用粉末冶金技术制备梯度多孔镁。研究了造孔剂梯度分布和烧结温度对梯度多孔镁孔隙特性、烧结收缩行为以及压缩性能的影响。研究结果表明,随着梯度结构中间层造孔剂含量的增加,梯度多孔镁样品的平均孔隙度升高,烧结收缩率、抗压强度以及杨氏模量均降低。此外,随着烧结温度的升高,梯度多孔镁样品的平均孔隙度降低,烧结收缩率、抗压强度和杨氏模量均增加。造孔剂分布为质量分数5%15%的多孔镁样品经620"C烧结2h后,平均孔隙度为27.3%,烧结收缩率为11.7%,抗压强度为24.5MPa,杨氏模量为1.83GPa.  相似文献   

13.
Raw Mg,Si powder were used to fabricate Mg2Si bulk thermoelectric generator by spark plasma sintering (SPS).The optimum parameters to synthesize pure Mg2Si powder were found to be 823 K,0 MPa,10 min with excessive content of 10wt% Mg from the stoichiometric Mg2Si.Mg2Si bulk was synthesized and densified simultaneously at low temperature (823 K) and high pressure (higher than 100 MPa) from the raw powder,but Mg,Si could not react completely,and the sample was not very dense with some microcracks on the surface.Then,Mg,Si powder reacted at 823 K,0 MPa,10 min in SPS chamber to form Mg2Si green compact,again sintered by SPS at 1023 K,20 MPa,5 min.The fabricated sample only contained Mg2Si phase with fully relative density.  相似文献   

14.
原料粉末对碳化硼烧结性能的影响   总被引:7,自引:0,他引:7  
研究了原料粉末对碳化硼陶瓷常压烧结性能的影响,试验表明增加原料粉末的比表面积和纯度能显著地促进烧结过程,且提高其烧结的质量密度,当比表面积大于16m^2/g时,可使烧结体的相对密度达到98.7%以上,抗弯强度达到456MPa,硬度HV达到为2790。制品的性能接近热压制品的水平。  相似文献   

15.
Based on considering both negative effect of compacting pressure on glass temperature (Tg) and positiveeffect of plasticizer added into organic binder, a mathematical equation for adjusting Tg of binder used for warmcompaction processing is given. The equation shows that mass fraction of plasticizer need for lowering Tg is function of compacting plessure. The rationality of the equation for warm compaction processing is also discussed.  相似文献   

16.
以高纯镁砂、西藏铬矿细粉为原料,分别添加0%,2%,4%,6%(质量分数)的金属Cr粉末,在200MPa下制成中50mm×20mm的试样,然后在1600℃,空气气氛下保温8h烧成.对烧成后的试样进行性能检测以及XRD分析.结果表明,添加金属Cr粉末有利于MgCr20。尖晶石相的生成.试样的显气孔率、体积变化随着金属Cr添加量的增加而增大,常温耐压强度随着添加量的增加出现明显下降.  相似文献   

17.
The properties and microstructure of microwave and conventional sintered Fe-2Cu-0.6C powder metallurgy (PM) alloys were investigated. The experimental results show that microwave sintered alloy has the better properties (sintered density 7.20 g/cm3, Rockwell hardness 75 HRB, tensile strength 413.90 MPa and elongation 6.0%), compared with the conventional sintered counterpart. Detailed analyses by using optical microscopy and scanning electron microscopy (SEM) reveal that microwave sintered sample has finer microstructure with small, rounded and uniformly distributed pores, and also demonstrate the presence of more flaky and granular pearlite in the microwave sintered body, both of which account for the property improvement. SEM images on the fracture morphology indicate that a mixed mode containing ductile and brittle fracture is presented in microwave sintered alloy, in contrast with the brittle fracture in conventional sintered counterpart. Funded by the National Science and Technology Development Program (No.2004-09ZD)  相似文献   

18.
Silver powder was fabricated by spray pyrolysis, using 2%–20% AgNO3 solution, 336–500 mL/h flux of AgNO3 solution, 0.28–0.32 MPa flux of carrier gas and in the 620–820 °C temperature range. The effects of furnace set temperature, concentration of AgNO3 aqueous solution, flux of AgNO3 aqueous solution as well as carrier gas on the morphology and particle size distribution of silver powder, were investigated. The experimental results showed that with the high concentration of AgNO3 aqueous solution, the average grain size of silver decreased with the increasing of furnace set temperature. But the gain size distribution was not homogenous, the discontinuous grain growth occurred. With the low concentration of AgNO3 aqueous solution, the higher furnace set temperature made the nano sliver grains sintered together to grow. Nano silver powder about 100 nm was fabricated by spray pyrolysis, using 2wt% AgNO3 solutions, 336 mL/h flux of AgNO3 aqueous solution, 0.32 MPa flux of carrier gas at 720 °C furnace set temperature.  相似文献   

19.
Pure alumina ceramic tube and 95 alumina ceramic(the ceramic with 95.84% alumina) tube were prepared by using self-prepared alumina micrometer powder without agglomeration as raw material. The ceramic green was shaped by isostatic pressing and sintered at different temperature from 800 to 1 600 ℃ for 2 h. The 95 ceramic tube sintered at 1 550 ℃ for 2 h had mean particle size of 4 μm, bend strength of 437 MPa and volume density of 3.714 g/cm3. Shape memory effect during sintering was observed. XRD results showed that no phase transition occurred during shape memory process, which indicated that shape memory effect was not caused by phase transition. Several probable causes of the alumina ceramic shape memory effect were discussed in this paper.  相似文献   

20.
Gelcasting of 316L stainless steel   总被引:1,自引:0,他引:1  
A novel near-net process, gelcasting, was successfully used to prepare larger size 316L stainless steel parts with complex shape. In this study, the effects of process parameters on the viscosity of the slurry and the dry green strength were investigated. The results show that gas atomization (GA) powder is more suitable for gelcasting compared with water atomization (WA) powder. The maximum solid loading is 55vol% for ball-milled slurry with GA powders. And the optimum amounts of monomers (acrylamide (AM) methylenebisacrylamide (MBAM); the mass ratio, 30:1) and initiator in the AM system are 1.8% (based on the weight of metal powder) and 0.8%-1.4% (based on the weight of monomers), respectively, at which, the maximum green strength obtained is 33.7 MPa. The mechanical properties of the sintered specimen are as follows: ultimate tensile strength, 493 MPa; yield strength, 162 MPa; and HRB, 72.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号