首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 109 毫秒
1.
《应用化工》2022,(4):620-623
以秸秆为原料,采用炭化和磺化方法制备炭质磺酸化固体酸催化剂,并通过XRD、SEM和FTIR对制备的催化剂结构进行表征。通过催化油酸和甲醇酯化反应制备生物柴油,考察相关因素对油酸转化率的影响。结果表明,在反应温度为68℃,催化剂质量为油酸质量的7%,反应时间为5 h,醇酸的物质的量比为12∶1,生物柴油转化率可达94.83%。  相似文献   

2.
固体酸催化剂制备生物柴油研究进展   总被引:2,自引:0,他引:2  
生物柴油是一种可再生的生物能源,近年来得到广泛关注.固体酸催化剂可同时催化油脂和脂肪酸制备生物柴油,同时还具有环境友好、易于和产物分离等优点.本文综述了沸石分子筛、杂多酸、离子交换树脂、固体超强酸等同体酸在催化合成生物柴油方面的研究进展.  相似文献   

3.
为了寻找一种以生物质废弃物为原料,低成本、高效率、温和地合成固体酸催化剂的方法,以废弃生物质橘子皮为原料,合成了磁性多孔碳质(MPCs)固体酸催化剂。采用XRD、IR和TGA等手段对其进行分析表征,并以油酸和乙醇酯化反应为模型,研究其催化性能。结果表明:在80℃、乙醇与油酸的物质的量比值为20%、催化剂与油酸的质量比值为7%的条件下反应8 h,MPCs-0.4-SO3H和MPCs-0.6-SO3H的酯化率分别达到77.9%和70.2%,显著高于商用催化剂Amberlyst-15的酯化率;在含水量为油酸质量的5%以及重复使用3次的酯化率与TOFs值也较Amberlyst-15的高;故实验制得的催化剂在酯化动力学、酯化率、耐水性与热稳定性等方面均优于商用催化剂Amberlyst-15,特别是其优越的磁性易分离特性使得酯化反应更方便、简单。  相似文献   

4.
生物柴油合成用木质素固体酸催化剂的制备   总被引:1,自引:0,他引:1  
采用炭化磺化法,以天然生物质木粉为原料制备了生物质炭基固体酸催化剂,研究了不同树种的生物质木粉对炭基固体酸催化剂的催化酯化性能的影响.比较了4种不同原料制备的炭基同体酸催化剂的催化性能,并进行了表征.结果表明,与其他炭基固体酸催化剂相比,以生物质木粉为原料制备的炭基固体酸催化剂表现出了较高的催化酯化性能.  相似文献   

5.
以常见的碳水化合物葡萄糖、纤维素、蔗糖、医用棉为原料,采用碳化磺化法制备得到四种碳基磺酸化固体酸催化剂.采用傅里叶转换红外光谱(FT-IR )、表面酸量的测定等手段对这四种碳基磺酸化固体酸进行了表征.同时,将其用在乙酸乙酯的合成中,比较了其催化效率、稳定性.此外,还进行了再生实验.  相似文献   

6.
姜磊  李保民 《广州化工》2011,39(22):52-54
以常见的碳水化合物葡萄糖、纤维素、蔗糖、医用棉为原料,采用碳化磺化法制备得到四种碳基磺酸化固体酸催化剂。采用傅里叶转换红外光谱(FT-IR)、表面酸量的测定等手段对这四种碳基磺酸化固体酸进行了表征。同时将其用在乙酸乙酯的合成中,比较了其催化效率、稳定性。此外还进行了再生实验。  相似文献   

7.
8.
制备生物柴油的固体酸催化剂研究进展   总被引:1,自引:0,他引:1  
张秋云  杨松  李虎 《化工进展》2013,32(3):575-583,591
生物柴油是一种绿色可再生能源。目前,大多采用高活性的固体酸催化酯化、酯交换反应进行制备,该工艺具有产品与催化剂易分离、催化剂可回收再生且环保等优点。本文综述了固体超强酸、负载型固体酸、金属氧化物及复合物、沸石分子筛、阳离子交换树脂、离子液体及杂多酸等不同类型固体酸催化剂催化制备生物柴油的最新研究进展,包括催化剂的制备、活性、催化行为。最后,对制备生物柴油的固体酸在物理化学性质、成本等方面的研究进行展望。  相似文献   

9.
废油脂制备生物柴油新型固体酸催化剂研究   总被引:4,自引:0,他引:4  
王仰东  刘国文 《现代化工》2007,27(11):45-47
以废弃食用油等高酸值原料油转化为生物柴油的催化工艺,开发了一种新型催化剂.研制的固体超强酸S2O28-/Fe2O3-ZrO2-La2O3,其中n(Fe)∶n(Zr)∶n(La)=1∶0.42∶0.075时,具有较高催化活性.优化工艺条件为催化剂用量为原料油质量的2%,醇油摩尔比为12∶1,反应温度为220℃,反应时间10 h,生物柴油的产率为90.3%.催化剂使用50 h后所得生物柴油产率仍在83%以上.  相似文献   

10.
本次研究主要是以秸秆作为主要的原料,使用炭化及磺化的方式,制备炭质硫酸化固体酸催化剂,运用XRD、SEM及FT-IR对制备之后的催化剂结构完成表征。运用催化油酸及甲醇脂化反应制备出生物柴油,分析涉及到的因素对油酸转化率造成的影响。  相似文献   

11.
炭基固体磺酸催化剂的制备及其催化活性研究   总被引:2,自引:0,他引:2  
饶兰  杨琴  蒋文伟 《陕西化工》2014,(2):277-280,283
以竹材为原料,硫酸为磺化剂,通过炭化-磺化法制得竹炭基固体磺酸催化剂,并用于癸二酸和正丁醇的酯化反应,考察了制备条件对催化剂活性的影响.采用傅里叶红外光谱(FTIR)、X射线衍射(XRD)、扫描电子显微镜仪(SEM)及热失重分析(TGA)等手段对催化剂进行表征.结果表明,在炭化温度325℃下炭化1h,磺化温度125℃下磺化1h制得的催化剂,其含酸量可达到1.4 mmol/g,在催化癸二酸和正丁醇的酯化反应中,转化率高达99%,此时催化剂的催化活性最高,且催化剂可循环多次利用.此竹炭基固体磺酸催化剂具有无定形炭结构,热稳定性可达230℃.  相似文献   

12.
王婷  蔡文静  刘熠斌  杨朝合 《化工进展》2016,35(9):2783-2789
生物柴油是一种绿色的可再生能源,主要通过酯交换反应生产。催化剂在酯交换反应中起重要作用,固体酸催化剂因污染少、效率高、易分离而成为研究热点。本文介绍了固体酸催化制备生物柴油的反应机理,综述了国内外近几年生物柴油制备中所用固体酸催化剂的研究进展,分为固体杂多酸、无机酸盐、金属氧化物及其复合物、沸石分子筛及阳离子交换树脂等,分析了催化剂的制备流程、反应操作条件和反应结果等,得出固体酸在催化含有大量水分和游离酸的油脂酯交换反应方面具有独特的优势,且符合生物柴油绿色生产的要求,是需要进一步研究和开发的方向。  相似文献   

13.
提出了一种负载型膨润土固体碱催化剂的制备方法,并将此催化剂用于生物柴油合成的酯交换反应。该催化剂通过碱性钙基膨润土在半干条件下负载氢氧化钠制得。催化剂制备的单因素实验结果表明:当氢氧化钠与碱性钙基膨润土的质量配比为0.6、负载时间为18 h、温度为60 ℃及碱性钙基膨润土中OH−含量为1.5 mmol/g时,催化剂中氢氧化钠负载量达到4.10 mmol/g。将该催化剂用于生物柴油酯交换反应,反应转化率可达97.4%,反应完成后生物柴油无需洗涤,避免了三废的大量排放,减少了对环境的污染。  相似文献   

14.
李敏  丛兴顺  孙兰强 《工业催化》2011,19(12):59-62
多相催化生产生物柴油因其环境友好和经济效益突出而成为研究热点.以高纯蒙脱石为原料,用HCl酸化制得活性白土,再用Ca(OH)2改性,制备出具有阴离子交换性的碱性蒙脱石,然后负载NaOH制备蒙脱石固体碱催化剂,并将其用于制备生物柴油的酯交换反应.结果表明,在m(NaOH)∶m(碱性蒙脱石)=0.7、负载时间18 h和碱性...  相似文献   

15.
新型固体碱铝酸钙催化剂用于生物柴油的制备研究   总被引:1,自引:0,他引:1  
采用化学合成法制备了铝酸钙固体催化剂,并将其用于菜籽油与甲醇酯交换反应的研究.考察了酯交换反应的条件,实验结果表明,当醇/油摩尔比为15:1,催化剂质茸分数6%,反应温度65℃,搅拌速率270 r/min,反应时间3 h,甲酯的收率为89.05%.产物和催化剂固液分离简单容易,铝酸钙固体催化剂具有较好的稳定性,连续使用7次,甲酯的收率均在87.00%以上.同时采用Hammett指示剂法、XRD、BET等手段对铝酸钙同体催化剂进行了表征.  相似文献   

16.
石墨烯是由碳原子以sp2杂化连接的单原子层构成的新型二维碳原子晶体,由于含有众多具有反应活性的碳碳双键,石墨烯纳米片表面很容易进行化学修饰键合有机官能团而改变其性质。采用改良Hummers法制备氧化石墨烯,通过磺化反应制备磺化石墨烯固体酸催化剂,通过FT-IR、元素分析和XPS等对其结构进行表征。将制备的氧化石墨烯和磺化石墨烯应用于催化纤维二糖的水解反应,以纤维二糖糖苷键的水解反应为模型考察其酸催化性能。结果表明,氧化石墨烯和磺化石墨烯中含有-COOH、-OH和-SO3H等官能团,磺酸根密度分别为1.0 mmol·g-1和2.2 mmol·g-1,氧化石墨烯和磺化石墨烯具有与H2SO4相比拟的酸催化活性,尽管酸性强度和密度较低,但催化活性与H2SO4相当。  相似文献   

17.
Na^+/MgO固体碱催化制备生物柴油   总被引:2,自引:0,他引:2  
利用等体积浸渍法制备了不同浓度NaOH浸渍的Na+/MgO固体碱,并考察了它们对制备生物柴油的催化性能.探讨了催化剂用量,醇油摩尔比,反应温度及反应时间对酯交换反应的影响,利用正交分析得到了反应的最佳条件:催化剂用量为原料油质量的2%,醇油摩尔比12:1,反应温度为60℃,反应时间90 min,转化率可达82.3%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号