首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 250 毫秒
1.
基于噪声消除技术的超宽带低噪声放大器设计   总被引:1,自引:0,他引:1  
基于TSMC 0.18μm工艺研究3 GHz~5 GHz CMOS超宽带无线通信系统接收信号前端的低噪声放大器设计。采用单端转差分电路实现对低噪声放大器噪声消除的目的,利用串联电感作为负载提供宽带匹配。仿真结果表明,所设计的电路正向电压增益S21为17.8 dB~19.6 dB,输入、输出端口反射系数均小于-11 dB,噪声系数NF为2.02 dB~2.4 dB。在1.8 V供电电压下电路功耗为12.5 mW。  相似文献   

2.
3GHz~5GHz超宽带噪声系数稳定的低噪声放大器   总被引:3,自引:2,他引:1  
采用共源共栅级结构和源极负反馈电路设计了一款应用于超宽带系统的低噪声放大器电路。结合巴特沃斯滤波器的特性,实现放大器的输入、输出匹配网络,并详细分析了电路的噪声系数。基于TSMC 0.18μm CMOS工艺,在3 GHz~5 GHz频带范围内对电路进行ADS软件仿真。仿真结果表明,在1.8 V供电电压下,功耗为13.2 mW,最大增益达到15 dB且增益平坦,最大噪声系数仅为1.647 dB,输入反射系数S11<-10 dB,输出反射系数S22<-14 dB。  相似文献   

3.
采用新型电流舵结构的增益可调UWBLNA   总被引:1,自引:0,他引:1  
基于TSMC 0.18μm CMOS工艺,设计了一款工作在3 GHz5 GHz频段的增益可调超宽带低噪声放大器(LNA)。LNA输入级采用局部反馈的共栅结构,实现了超宽带输入匹配和良好的噪声性能;放大电路级采用提出的新型电流舵结构,实现了放大器增益连续可调;输出级采用源极跟随器,获得了良好的输出匹配。利用ADS2009进行仿真验证,结果表明,在3 GHz5 GHz频段的增益可调超宽带低噪声放大器(LNA)。LNA输入级采用局部反馈的共栅结构,实现了超宽带输入匹配和良好的噪声性能;放大电路级采用提出的新型电流舵结构,实现了放大器增益连续可调;输出级采用源极跟随器,获得了良好的输出匹配。利用ADS2009进行仿真验证,结果表明,在3 GHz5 GHz工作频段内,LNA获得了25 dB的增益可调范围,最高增益达到24 dB,输入端口反射系数小于-11 dB,输出端口反射系数小于-14 dB,最小噪声系数为2.3 dB,三阶交调点(IIP3)为4 dBm,在1.2 V电压下,电路功耗仅为8.8 mW。  相似文献   

4.
提出一个共源共栅结构的超宽带低噪声放大器。该电路基于台积电0.18μmCMOS工艺,工作在3GHz~5GHz频率下,用来实现超宽带无线电。仿真结果表明,该低噪声放大器有最大13.6dB的增益。整个频段噪声系数小于1.9dB。输入和输出反射损耗都小于-11dB。一阶压缩点在-15dBm左右。功耗为18.7mW。  相似文献   

5.
基于TSMC 0.18μm CMOS工艺的研究,设计了一个应用于3~10 GHz超宽带无线通信系统接收前端的低噪声放大器。以经典的共源共栅的结构作为放大主架构,结合切比雪夫滤波器,实现超宽带输入匹配,并采用噪声消除技术优化LNA噪声性能。电路结构具有工作带宽大、输入匹配简单并且噪声性能优异的优点。仿真结果表明:在3~10 GHz频段内,S11和S22均小于-10 d B,S21为15 d B~10 d B,噪声系数NF为1.5 d B~2.3 d B,在1.8 V供电电压下电路功耗为14.5 m W。  相似文献   

6.
一种0.8GHz~6GHz CMOS超宽带低噪声放大器设计   总被引:1,自引:0,他引:1  
给出了一个针对0.8GHz~6GHz 的超宽带低噪声放大器 UWB LNA(ultra-wideband low noiseamplifier)设计。设计采用0.18μm RF CMOS 工艺完成。在0.8GHz~6GHz 的频段内,放大器增益 S21达到了17.6dB~13.6dB。输入、输出均实现良好的阻抗匹配,S11、S22均低于-10dB。噪声系数(NF)为2.7dB~4.6dB。在1.8V 工作电压下放大器的直流功耗约为12mW。  相似文献   

7.
结合电阻并联反馈,利用PCSNIM流程设计了一个用于超宽带(UWB)系统的宽带LNA电路。电阻并联反馈降低了输入电路的Q值,使窄带LNA带宽增加,而对NF的影响很小。用TSMC0.18CMOS工艺进行仿真,结果表明,LNA在3.1-5.1GHz带宽范围内NF小于2.9dB。输入匹配优于-10.5dB,功率增益为12.9dB,带内波动仅为1dB。在1.8V电源电压下,核心电路功耗为7.5mW。  相似文献   

8.
《电子技术应用》2016,(6):30-33
设计了一种应用于超宽带无线接收机的高线性度宽带可编程增益放大器(PGA),该PGA采用线性度增强型源简并结构的放大器加电阻衰减网络的结构,增益的调节分两步完成,PGA Core实现6dB增益调节步长,电阻衰减网络实现1dB增益调节步长,PGA Core电路采用线性度增强型源简并结构放大器,提高PGA的线性度。PGA采用SMIC 0.18μm混合信号CMOS工艺,1.8 V电源电压供电,仿真结果表明,该PGA增益范围-4~28dB,1dB步进,3dB带宽大于280 MHz,最大增益时输出三阶交调点(OIP3)25.7dBm,噪声系数(NF)22.24dB,总体电路消耗10.4 m A电流,芯片有效面积0.2 mm~2。  相似文献   

9.
本文介绍了一种具有片上巴伦的超宽带(UWB)3GHz~5GHz直接转换接收机。它由电容交叉耦合共栅极低噪声放大器(LNA)和改进型吉尔伯特混频器组成,采用SMIC RFCMOS技术。仿真结果表明,本文所设计的UWB接收机具有较好的输入匹配(〈-9dB)、3.9dB~5.5dB的噪声系数和19dB~25dB的功率转换增益。在1.2V供电情况下消耗22mA电流,并占用0.66×0.8mm2芯片面积(包括焊盘)。  相似文献   

10.
本文设计实现了一个2~5GHz的两级CMOS低噪声放大器(LNA),可应用在超宽带的下半频段(3.1~5GHz)。LNA由两级组成,第一级是一个共栅级,保持良好的线性度并完成较好的输入匹配;第二级是一个共源级堆叠一个电流源,在保持低噪声系数的同时降低功耗。通过级联共栅和共源结构进行增益补偿,所设计的LNA具有近似恒定的增益和噪声系数。采用0.18μm CMOS工艺实现后,模拟结果表明,增益和噪声系数在2~5GHz频率范围内分别为11.5dB和5.1dB,输入反射系数低于-22dB。在4GHz时,模拟得到的三阶交调点为-10dBm。在1.8V电源电压下,LNA的功耗约为11mW。  相似文献   

11.
提出了一个低噪声、高线性的超宽带低噪声放大器(UWB LNA).电路由窄带PCSNIM LNA拓扑结构和并联低Q负载结构组成,采用TSMC 0.18 μm RFCMOS工艺,并在其输入输出端引入了高阶带通滤波器.仿真结果表明,在1.8V直流电压下LNA的功耗约为10.6 mW.在3 GHz~5 GHz 的超宽带频段内,...  相似文献   

12.
In this paper a 2.45 GHz narrowband low noise amplifier (LNA) for wireless communication system is enunciated. The proposed CMOS Low Noise amplifier has been verified through cadence spectre RF simulation in standard UMC 90 nm CMOS process. The proposed LNA is designed by cascoding of two transistors; that is the common source transistor drives a common gate transistor. To achieve better power gain along with low noise figure, cascoding of two transistor and source degeneration technique is used and for low power consumption, the MOS transistors are biased in subthreshold region. At 2.45 GHz frequency, it exhibits power gain 31.53 dB. The S11, S22 and S12 of the circuit is ?9.14, ?9.22 and ?38.03 dB respectively. The 1 dB compression point of the circuit is ?16.89 dBm and IIP3 is ?5.70 dBm. The noise figure is 2.34 dB, input/output match of ?9.14 dB/?9.22 dB and power consumption 8.5 mW at 1.2 V.  相似文献   

13.
北斗卫星导航系统由我国自主研发,其研制目的是为了在日益严峻的世界环境下巩固我国的军事实力。北斗射频接收芯片是北斗卫星导航系统中整个地面端设备的核心,因此,关于射频接收机芯片的研发工作具有十分重要且实际的意义。文中在基于窄带低噪声放大器理论的基础上,采用TSMC0.18μmCMOS工艺设计了一种应用于北斗通信系统中的低噪声放大器。放大器采用改进的单转双电路结构,并通过缓冲级电路对差分信号的幅度和相位偏差进行了有效的校正。实验结果表明该电路在2.45GHz-2.55GHz频带内输入回波损耗小于-28dB,噪声系数小于1.1dB,功率增益大于15dB,电压增益高于32dB。  相似文献   

14.
采用噪声抵消技术的高增益CMOS宽带LNA设计   总被引:1,自引:0,他引:1  
设计了一种面向多频段应用的CMOS宽带低噪声放大器。采用噪声抵消技术以及局部负反馈结构,引入栅极电感补偿高频的增益损失,电路具有高增益、低噪声的特点,并且具有平坦的通带增益。设计采用UMC 0.18μm工艺,后仿真显示:在1.8 V供电电压下,LNA的直流功耗约为9.45 mW,电路的最大增益约为23 dB,3 dB频带范围为0.1 GHz1.35 GHz,3 dB带宽内的噪声约为1.7 dB1.35 GHz,3 dB带宽内的噪声约为1.7 dB5 dB;在1 V供电电压下,电路依然能够保持较高的性能。  相似文献   

15.
A 0.18‐μm CMOS low‐noise amplifier (LNA) operating over the entire ultra‐wideband (UWB) frequency range of 3.1–10.6 GHz, has been designed, fabricated, and tested. The UWB LNA achieves the measured power gain of 7.5 ± 2.5 dB, minimum input matching of ?8 dB, noise figure from 3.9 to 6.3 dB, and IIP3 from ?8 to ?1.9 dBm, while consuming only 9 mW over 3–10 GHz. It occupies only 0.55 × 0.4 mm2 without RF and DC pads. The design uses only two on‐chip inductors, one of which is such small that could be replaced by a bonding wire. The gain, noise figure, and matching of the amplifier are also analyzed. © 2011 Wiley Periodicals, Inc. Int J RF and Microwave CAE , 2011.  相似文献   

16.
A comparative study on recent works on low noise amplifiers (LNAs) designed to be operated at mobile communication band is performed in this article. Here, specifications of different generations of mobile communication are listed, which are considered to classify recent works on LNAs. Even though gain and noise figure (NF) are the primary parameters of LNA; other parameters like power, linearity, bandwidth, and area also get importance. Due to this, optimization techniques handpicked for all those parameters are discussed. The inverse relation between gain and NF is exploited to achieve low noise and high gain together. While increasing the gain, power consumption is increased by drain current. Each LNA is found as good in terms of gain and other parameters to satisfy the requirements. The figure of merit is opted to find the performance of each LNA, and the comparison is performed. The best parameters reported in the comparison are 31.53 dB of gain, 0.7 dB of NF, 0.03 mw of power consumption, 18.14 dBm of third‐order input intercept point (IIP3), 24 GHz bandwidth and 0.0052 mm2 of area at different frequencies and technology nodes. In this survey, as per the optimized FoM for mobile communication, cross‐coupled common gate differential LNA, which was designed to be operated at 0.3 to 2.96 GHz gives better results among CMOS LNAs.  相似文献   

17.
采用一种新颖的前馈补偿差分跨导结构和LC-tank折叠共源共栅技术设计了一种适用于汽车防撞雷达系统前端的24 GHz高线性低功耗CMOS下变频混频器,详细分析了Gilbert单元混频器的线性度指标和其优化技术。该混频器工作电压为1.8 V,射频信号为24.0 GHz,中频信号为100 MHz,采用TSMC 0.18μm RF CMOS工艺实现了电路仿真和版图的设计,仿真结果表明:该混频器IIP3可达4 dBm,增益为-9.2 dB,功耗为5.7 mW。  相似文献   

18.
In this article, a novel six port antenna for better spectrum utilization efficiency in cognitive radio (CR) applications is presented. In this six port antenna system, an ultra‐wideband (UWB) sensing antenna and five wideband/narrowband (NB) antennas are integrated on the same substrate in a compact area of 1134 mm2 . Antenna associated with port 1, which is meant for sensing, has ?10 dB reflection coefficient bandwidth of 3 to 11 GHz and the antennas associated with ports 2, 3, 4, 5, and 6 have ?10 dB reflection coefficient bandwidths of 3.6 to 5.8 GHz (single band), 2.9 to 3.6 GHz and 5.4 to 7.98 GHz (dual band), 7.95 to 8.38 GHz and 9 to 9.85 GHz (dual band), 8.38 to 9 GHz (single band) and 9.7 to 10.7 GHz (single band), respectively. Minimum isolation of 20 dB is attained between UWB sensing antenna and any narrowband/wideband antenna except between the antennas associated with ports 1 and 2 where minimum isolation of 12 dB is achieved over the operating bandwidth of UWB sensing antenna. Moreover, among all wideband/narrowband antennas, isolation of less than 15 dB is achieved. More importantly, the narrowband and wideband antennas meant for communication cover all frequency bands in UWB and a good match between the simulated and measured results is noticed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号