首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 62 毫秒
1.
首先对国内微博平台的信息进行了综合分析,主要介绍了微博信息的定义,在错综复杂的微博信息中哪些信息比较重要,以及这些微博信息包含哪些详细的内容,是如何组织的。然后选取新浪微博平台作为研究对象,利用新浪微博API设计了爬虫程序,抽取用户信息;以用户的关注人数、粉丝数和发布的微博数为标准对用户信息进行了定量分析。最后根据分析结果,针对不同特征的用户群体提出了相应的标签推荐方法。  相似文献   

2.
向微博用户推荐对其有价值和感兴趣的内容,是改善用户体验的重要途径。通过分析微博的特点以及现有微博推荐算法的缺陷,利用标签信息表征用户兴趣,提出一种基于标签概率相关性的微博推荐方法 LPCMR。首先,该方法利用标签之间的概率相关性,构造标签相似性矩阵。然后通过相关性标签权重加权方案,加强标签权重,构建用户-标签矩阵。针对用户标签矩阵稀疏的问题,采用标签相似性矩阵对用户-标签矩阵进行更新,使该矩阵既包含用户兴趣信息,又包含标签与标签之间的关系。以新浪微博公开API抓取的微博信息作为实验数据,进行了一系列的实验和分析,结果表明本文提出的推荐算法具有较好的效果。  相似文献   

3.
海量的微博信息使新进用户很难获取到其感兴趣的内容,重要微博用户推荐为新用户提供了一条有效获取信息的途径。目前,由于 用户间的关系没有被充分考虑及缺乏对用户个性化标签的处理,导致重要微博用户推荐的准确率不高。为此,提出了一种基于标签和PageRank的重要微博用户推荐算法。该算法首先对个性化标签进行分词、去噪、设置权重等处理,并将其作为用户兴趣的代表;然后根据PageRank计算模型来分析用户间的关系,结合标签相似度计算向新用户推荐与其兴趣相似的重要微博用户。 实验表明,该算法由于融入了对微博用户关系和用户个性化标签的重要性分析,因此与基于标签和协同过滤的个性化推荐算法相比 具有更高的重要微博用户推荐准确率。  相似文献   

4.
为了解决推荐算法中用户标签稀疏、推荐准确度不高的问题,提出了一种基于用户标签的微博推荐算法。利用TextRank排序方法提取用户发布微博中的关键词,并对该关键词进行扩展,将其作为表示用户兴趣的标签;再根据微博的效应函数和生命周期形成待推荐的微博列表,计算用户标签及其同义词在待推荐微博列表 中出现的次数,将出现次数较多的TOP-k条微博推荐给用户。通过实验验证,该算法能够有效地解决用户标签的稀疏性问题,并能提高推荐算法的准确性。  相似文献   

5.
社会化标签系统允许用户使用个性化的词汇对网络中的资源进行标注而被用户广泛接受。在微博网络中,用户可以为自己加注标签以推广自己或者方便别人找到自己。深入分析了微博用户数据,总结了微博用户标签的特点,针对LDA(latent Dirichlet allocation)主题模型在处理短文本时存在的不足,提出了一种基于好友关系约束主题模型。在此基础上对微博用户标签进行主题分析,计算用户的主题分布,对标签词进行聚类,并最终为用户推荐标签。通过对比实验证明了该方法可以提高标签推荐的准确度。  相似文献   

6.
传统微博用户推荐算法采用的数据来源单一,模型简单,导致推荐准确率不高。针对这一问题,本文提出一种基于标签的User Profile推荐算法,根据微博数据的特点,深入研究“微博文本”、“标签”、“社交关系”和“用户自身基本信息”等因素对微博个性化推荐的影响,通过训练LDA主题模型和SVM分类器将它们转换为标签,并赋予权重来描述用户兴趣,进行用户推荐以提高推荐准确性。实验结果表明,与传统VSM模型方法相比,该算法进行用户推荐效果更佳。  相似文献   

7.
马慧芳  张迪  赵卫中  史忠植 《软件学报》2019,30(11):3397-3412
向微博用户推荐对其有价值和感兴趣的内容,是改善用户体验的重要途径.通过分析微博特点以及现有微博推荐算法的缺陷,利用标签信息表征用户兴趣,提出一种结合标签扩充与标签概率相关性的微博推荐方法.首先,考虑到大部分微博用户未给自己添加任何标签或添加标签过少,视用户发布微博为超边,微博中的词视为超点来构建超图,并以一定的加权策略对超边和超点进行加权,通过在超图上随机游走,得到一定数量的关键词,对微博用户标签进行扩充;然后,采用相关性标签权重加权方案构建用户-标签矩阵,利用标签之间的概率相关性,构造标签相似性矩阵,对用户-标签矩阵进行更新,使该矩阵既包含用户兴趣信息,又包含标签与标签之间的关系.以新浪微博公开API抓取的微博信息作为实验数据进行了一系列的实验和分析,结果表明,该推荐算法具有较好的效果.  相似文献   

8.
微博社交媒体营销的兴起使得快速准确地在微博中定位行业信息变得越来越重要。提出一种基于关键词的行业信息个性化推荐方法以帮助用户快速准确地获得行业相关信息。从基于行业用户历史微博的关键词提取与基于词语共现信息的关键词扩展两个角度生成行业关键词向量,关键词提取与扩展的结果将根据用户自定义权重进行线性合并。最后,据此合并向量对用户订阅微博进行相关度计算,为用户推荐相关信息。该方法在新浪微博平台上以若干具有代表性的企业微博数据进行实验,证明了方法的有效性。  相似文献   

9.
针对人物标签推荐中多样性及推荐标签质量问题,该文提出了一种融合个性化与多样性的人物标签推荐方法。该方法使用主题模型对用户关注对象建模,通过聚类分析把具有相似言论的对象划分到同一类簇;然后对每个类簇的标签进行冗余处理,并选取代表性标签;最后对不同类簇中的标签融合排序,以获取Top-K个标签推荐给用户。实验结果表明,与已有推荐方法相比,该方法在反映用户兴趣爱好的同时,能显著提高标签推荐质量和推荐结果的多样性。  相似文献   

10.
为进一步提升标签推荐的质量,提出一种考虑用户当前标注状态的标签推荐方法.首先根据统计分析方法发现社会标签系统中用户使用的标签总数随时间有一定的变化规律,因此提出当前用户标注状态可能属于下列3种情况之一:成长态、成熟态和休眠态,并给出相关定义.然后根据3种用户标注状态的不同特点,提出不同策略下计算标签的概率分布,为用户推荐最可能使用的标签.对比实验表明文中方法能提供更准确的推荐结果.  相似文献   

11.
黄媛  李兵  何鹏  熊伟 《计算机科学》2013,40(2):167-171
聚类Web服务能大大提高W c6服务搜索引擎检索相关服务的能力。ProgrammablcWeb. com是一个很流行 的在线社会Mashup网站。作为基于Web的应用程序,Mashup本质上是开发者提供的Web服务。结合Mashup服 务的描述文档和相应标签提出一种新颖的Mashup服务聚类的方法,此外还提出一种标签推荐的方法来改进服务聚 类的性能。实验结果表明,基于标签推荐的服务聚类方法的聚类精度比其他两种实验方法要高,说明提出的标签推荐 策略有效扩充了标签数较少的Mashup服务,从而带来更多相关标签信息,因而聚类效果更好。  相似文献   

12.
刘功申  孟魁  谢婧 《计算机科学》2014,41(12):33-37
以新浪微博为研究对象,基于用户特征将用户对微博转发量的影响力进行量化,提出了一种微博预警算法。首先,分别研究了大转发量与小转发量的微博作者的用户基本特征,获得其中对关键用户与非关键用户具有良好区分度的特征,并基于信息增益的特征选择法获得用户特征对用户关键性的区分度。随后,基于特征加权模型,提出了一种用户对微博转发量的影响力的量化算法。最后,提出了一种微博预警算法,该算法对给定的新发布的微博,以其作者及已有转发用户的特征就用户对该微博转发量的影响力进行量化,当影响力超过一定阈值时,输出预警信息。该算法可以有效控制敏感微博在网络上的传播及扩散。  相似文献   

13.
随着Web的推广和普及,产生了越来越多的网络数据。 广泛应用了 标签系统 ,以便人们使用搜索技术来组织和使用这些信息。这些数据允许用户使用关键字(标签)注释资源,为传统的基于文本的信息检索提供了方案。为了支持用户选择正确的关键字,标签推荐算法应运而生。提出了一种个性化标签推荐方法,该方法综合了用户的资源标签与标签概率模型。该模型利用了简单语言模型和隐含狄利克雷分配模型,并针对现实世界的大型数据集进行了大量实验。实验表明,该个性化方法改进了标签推荐算法,推荐结果优于传统方法。  相似文献   

14.
何明  杨芃  要凯升  张久伶 《计算机科学》2018,45(Z6):465-470, 486
标签作为Web 2.0时代信息分类和检索的有效方式,已经成为近年的热点研究对象。标签推荐系统旨在利用标签数据为用户提供个性化推荐。现有的基于标签的推荐方法在预测用户对物品的兴趣度时往往倾向于赋予热门标签及其对应的热门物品较大的权重,导致权重偏差,降低了推荐结果的新颖性,未能充分反映用户个性化的兴趣。针对上述问题,定义了标签熵的概念来度量标签的不确定性,提出了标签熵特征表示的协同过滤个性化推荐算法。该算法通过引入标签熵来解决权重偏差问题,利用三分图形式描述用户-标签-项目之间的关系;构建基于标签熵特征表示的用户和项目特征表示,并通过特征相似性度量方法计算项目的相似性;最后利用用户标签行为和项目的相似性线性组合预测用户对项目的偏好值,并根据预测偏好值排序生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐准确性和新颖性,满足用户的个性化需求。  相似文献   

15.
何明  要凯升  杨芃  张久伶 《计算机科学》2018,45(Z6):415-422
标签推荐系统旨在利用标签数据为用户提供个性化推荐。已有的基于标签的推荐方法往往忽视了用户和资源本身的特征,而且在相似性度量时仅针对项目相似性或用户相似性进行计算,并未充分考虑二者之间的有效融合,推荐结果的准确性较低。为了解决上述问题,将标签信息融入到结合用户相似性和项目相似性的协同过滤中,提出融合标签特征与相似性的协同过滤个性化推荐方法。该方法在充分考虑用户、项目以及标签信息的基础上,利用二维矩阵来定义用户-标签以及标签-项目之间的行为。构建用户和项目的标签特征表示,通过基于标签特征的相似性度量方法计算用户相似性和项目相似性。基于用户标签行为和用户与项目的相似性线性组合来预测用户对项目的偏好值,并根据预测偏好值排序,生成最终的推荐列表。在Last.fm数据集上的实验结果表明,该方法能够提高推荐的准确度,满足用户的个性化需求。  相似文献   

16.
曾安  徐小强 《计算机科学》2017,44(8):246-251
针对传统推荐算法存在数据稀疏影响推荐效果的问题,考虑到社交网络中的链路预测能够综合考虑用户节点之间的拓扑结构,以及好友关系能反映用户的兴趣爱好,提出了一种融合好友关系和标签信息的推荐算法。首先,借助网络资源分配算法对社交网络的结构信息进行特征提取;然后,利用TF-IDF构建合理的社会化标签模型;最后,利用线性模型融合两方面的信息,从而实现推荐。在Last.fm和Delicious数据集上的实验表明,与传统算法相比,所提算法在推荐的召回率和准确率指标上有显著提高。  相似文献   

17.
基于Tag和协同过滤的混合推荐方法   总被引:2,自引:0,他引:2       下载免费PDF全文
针对传统协同过滤方法的稀疏性问题,提出基于标签(Tag)和协同过滤的混合推荐方法TAG-CF。通过Tag分类信息获取项目的最近邻居,采用基于项目的最近邻方法预测用户评分值,并利用该预测值填充用户评分矩阵,构造密集的伪矩阵,运用基于用户的的协同过滤方法在伪矩阵上计算用户对项目的预测评分值。实验结果表明,TAG-CF能有效降低推荐系统的平均绝对误差,提高推荐质量。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号