首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Ceramics International》2022,48(6):8331-8340
The extensive use of broad-spectrum antibiotics has resulted in antibiotic resistance for many human pathogenic bacteria making multi-drug resistance an increasing issue in the management of various infectious diseases. The current research focused on the green synthesis of nickel/nickel oxide nanoparticles (Nio/NiO nanoparticles) using seeds extract of Lactuca Serriola, bactericidal effect on human pathogenic bacteria and the photocatalytic activity. Highly crystalline nature of Nio/NiO nanoparticles was confirmed by X-ray diffraction (XRD). Infrared spectra of seeds extract of Lactuca Serriola (LS) evidenced the presence of many functional groups of phytochemicals acting as reducing or capping agents. From field emission scanning electron microscopic (FESEM) images of Nio/NiO nanoparticles, it was clearly observed that the particles were slightly spherical in shape with size <100 nm. The Nio/NiO nanoparticles were also tested against eight pathogenic bacteria (Pseudomonas aeruginosa, Staphylococcus aureus, Staphylococcus epidermidis, Basilus subtilis, Basilus pumilus, Micrococcus luteus, E. coli and Bordetella bronchiseptica) which displayed significant antibacterial activity at low doses and almost complete inhibition at optimized concentration. From the bandgap study, the reduced bandgap energy value of 1.57 eV indicated its potential semiconductor photocatalytic behavior. Higher degradation efficiency against the model contaminant crystal violet dye, possibility of multiple degradation mechanisms and simple recovery suggested that the green synthesized Nio/NiO nanoparticles might be best suitable candidates for environmental remediation applications.  相似文献   

2.
Colloidal solutions of silver nanoparticles (AgNPs) were synthesized by gamma Co-60 irradiation using different stabilizers, namely polyvinyl pyrrolidone (PVP), polyvinyl alcohol (PVA), alginate, and sericin. The particle size measured from TEM images was 4.3, 6.1, 7.6, and 10.2 nm for AgNPs/PVP, AgNPs/PVA, AgNPs/alginate, and AgNPs/sericin, respectively. The influence of different stabilizers on the antibacterial activity of AgNPs was investigated. Results showed that AgNPs/alginate exhibited the highest antibacterial activity against Escherichia coli (E. coli) among the as-synthesized AgNPs. Handwash solution has been prepared using Na lauryl sulfate as surfactant, hydroxyethyl cellulose as binder, and 15 mg/L of AgNPs/alginate as antimicrobial agent. The obtained results on the antibacterial test of handwash for the dilution to 3 mg AgNPs/L showed that the antibacterial efficiency against E. coli was of 74.6%, 89.8%, and 99.0% for the contacted time of 1, 3, and 5 min, respectively. Thus, due to the biocompatibility of alginate extracted from seaweed and highly antimicrobial activity of AgNPs synthesized by gamma Co-60 irradiation, AgNPs/alginate is promising to use as an antimicrobial agent in biomedicine, cosmetic, and in other fields.  相似文献   

3.
Abstract

The objective of this present work is to optimize and prepare silver nanoparticles(AgNPs) in Dioctyl sodium sulfosuccinate (AOT) microemulsion (ME) for oral use and to investigate its antibacterial and anticancer activity in vitro and in vivo. In vitro drug release study confirmed that faster release of drug at the tumor cells compared to the blood circulation. It also showed a potential antibacterial activity against pathogenic bacteria. The optimized AgNPs loaded ME confirmed significant cytotoxicity against MCF-7 cancer cell line with IC50 16.72?±?0.014?μg/mL and significant reduction in solid Ehrlich tumor growth in compared to the control, placebo and pure drug.  相似文献   

4.
In recent years, green synthesis of nanoparticles, i.e., synthesizing nanoparticles using biological sources like bacteria, algae, fungus, or plant extracts have attracted much attention due to its environment-friendly and economic aspects. The present study demonstrates an eco-friendly and low-cost method of biosynthesis of silver nanoparticles using cell-free filtrate of phytopathogenic fungus Macrophomina phaseolina. UV-visible spectrum showed a peak at 450 nm corresponding to the plasmon absorbance of silver nanoparticles. Scanning electron microscopy (SEM), atomic force microscopy (AFM), and transmission electron microscopy (TEM) revealed the presence of spherical silver nanoparticles of the size range 5 to 40 nm, most of these being 16 to 20 nm in diameter. X-ray diffraction (XRD) spectrum of the nanoparticles exhibited 2θ values corresponding to silver nanoparticles. These nanoparticles were found to be naturally protein coated. SDS-PAGE analysis showed the presence of an 85-kDa protein band responsible for capping and stabilization of the silver nanoparticles. Antimicrobial activities of the silver nanoparticles against human as well as plant pathogenic multidrug-resistant bacteria were assayed. The particles showed inhibitory effect on the growth kinetics of human and plant bacteria. Furthermore, the genotoxic potential of the silver nanoparticles with increasing concentrations was evaluated by DNA fragmentation studies using plasmid DNA.  相似文献   

5.
The biosynthesis of nanoparticles has received increasing attention due to the growing need to develop safe, cost-effective and environmentally friendly technologies for nano-materials synthesis. In this report, silver nanoparticles (AgNPs) were synthesized using a reduction of aqueous Ag(+) ion with the culture supernatants of Aspergillus terreus. The reaction occurred at ambient temperature and in a few hours. The bioreduction of AgNPs was monitored by ultraviolet-visible spectroscopy, and the AgNPs obtained were characterized by transmission electron microscopy and X-ray diffraction. The synthesized AgNPs were polydispersed spherical particles ranging in size from 1 to 20 nm and stabilized in the solution. Reduced nicotinamide adenine dinucleotide (NADH) was found to be an important reducing agent for the biosynthesis, and the formation of AgNPs might be an enzyme-mediated extracellular reaction process. Furthermore, the antimicrobial potential of AgNPs was systematically evaluated. The synthesized AgNPs could efficiently inhibit various pathogenic organisms, including bacteria and fungi. The current research opens a new avenue for the green synthesis of nano-materials.  相似文献   

6.
Lysozyme, an antibacterial enzyme, was used as a stabilizing ligand for the synthesis of fairly uniform silver nanoparticles adopting various strategies. The synthesized particles were characterized using UV-visible spectroscopy, FTIR, dynamic light scattering (DLS), and TEM to observe their morphology and surface chemistry. The silver nanoparticles were evaluated for their antimicrobial activity against several bacterial species and various bacterial strains within the same species. The cationic silver nanoparticles were found to be more effective against Pseudomonas aeruginosa 3 compared to other bacterial species/strains investigated. Some of the bacterial strains of the same species showed variable antibacterial activity. The difference in antimicrobial activity of these particles has led to the conclusion that antimicrobial products formed from silver nanoparticles may not be equally effective against all the bacteria. This difference in the antibacterial activity of silver nanoparticles for different bacterial strains from the same species may be due to the genome islands that are acquired through horizontal gene transfer (HGT). These genome islands are expected to possess some genes that may encode enzymes to resist the antimicrobial activity of silver nanoparticles. These silver nanoparticles may thus also be used to differentiate some bacterial strains within the same species due to variable silver resistance of these variants, which may not possible by simple biochemical tests.  相似文献   

7.
A new method for production of nylon nanofibers with antibacterial properties containing silver nanoparticles (nylon nanofibers/Ag NPs) is introduced via in situ synthesis of nano-silver by reduction of silver nitrate in the polymer solution prior to electrospinning. The properties of the electrospinning solutions and the structures of the electrospun fibers were studied using scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDAX), UV?Cvis spectrophotometer and reflection spectrophotometer. Further, the antibacterial properties of the nanofibers were investigated against Escherichia coli (Gram-negative) and Staphylococcus aureus (Gram-positive) bacteria. Interestingly, an antibacterial properties has been found on nylon 6 nanofibers while the nylon nanofibers/Ag NPs showed excellent antibacterial activities against both tested bacteria. The produced nylon nanofibers/Ag NPs can be a good candidate for biomedical applications, water and air filtration.  相似文献   

8.
Silver nanoparticles and silver-graphene oxide nanocomposites were fabricated using a rapid and green microwave irradiation synthesis method. Silver nanoparticles with narrow size distribution were formed under microwave irradiation for both samples. The silver nanoparticles were distributed randomly on the surface of graphene oxide. The Fourier transform infrared and thermogravimetry analysis results showed that the graphene oxide for the AgNP-graphene oxide (AgGO) sample was partially reduced during the in situ synthesis of silver nanoparticles. Both silver nanoparticles and AgGO nanocomposites exhibited stronger antibacterial properties against Gram-negative bacteria (Salmonella typhi and Escherichia coli) than against Gram-positive bacteria (Staphyloccocus aureus and Staphyloccocus epidermidis). The AgGO nanocomposites consisting of approximately 40 wt.% silver can achieve antibacterial performance comparable to that of neat silver nanoparticles.  相似文献   

9.
Silver nanoparticles (AgNPs) are widely used in various fields but their physical and chemical instability have limited their applications. The present work demonstrates a novel approach for the synthesis and stabilising of AgNPs. Chitosan and carboxymethyl β-cyclodextrin were used to prepare a polymeric hydrogel with glutaraldehyde as cross-linker. As a result, AgNPs were formed with very high dispersion and stability in the hydrogel structure. It is possible to create nanoreactors to produce AgNPs by adding CM-βCD to the structure of the hydrogel. Fourier transform infrared (FTIR) analysis was employed to characterise the Cs-CM-βCD hydrogel. The morphologies of pure Cs-CM-βCD hydrogel and silver nanocomposite were observed by scanning electron microscopy. Moreover, UV–VIS spectroscopy and X-ray diffraction were used to characterise the prepared silver nanocomposite. In addition, the antibacterial properties of these silver nanocomposite hydrogels were investigated against Staphylococcus aureus (Gram positive) and Escherichia coli (Gram negative).  相似文献   

10.
利用鱼鳞明胶作为还原剂和稳定剂制备银纳米颗粒(silver nanoparticles, Ag NPs),研究Ag NPs添加量(0.04wt%-0.2wt%)对鱼鳞明胶-琼脂复合膜的理化性能和抗菌性能的影响。通过透射电子显微镜和X射线粉末衍射对合成的Ag NPs进行表征,结果表明制得Ag NPs为球形形貌,平均粒径为9.3 ?1.8 nm。随着Ag NPs添加量的增加,鱼鳞明胶-琼脂复合膜的色泽变黄渐深,透明度下降,对紫外和可见光的吸收增强,同时,复合膜的断裂延展性、水蒸气阻隔性能和耐水性能显著增强,而厚度和抗拉强度却无明显变化。FTIR和热重分析结果表明,Ag NPs与膜基质间存在化学相互作用,并在一定程度上改善了复合膜的热稳定性。抑菌环实验结果显示,复合膜可以在0.04wt%-0.2wt%较低的银浓度下实现良好的抗菌效果。研究结果将为鱼鳞明胶可降解抗菌包装材料的开发提供新思路。  相似文献   

11.
《Ceramics International》2015,41(4):5656-5662
A new route for the synthesis of aminophenol grafted and Ag NPs decorated reduced graphene sheet (Ag-RGS) was developed as an effective antibacterial nanostructure. The nucleophilic substitution reaction of amine group of aminophenol with epoxy group of GO in the presence of silver nitrate and subsequent reduction with hydrazine generated Ag-RGS nanocomposite. The morphology and structure of the as-synthesized nanocomposite was characterized by field emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), and Raman spectroscopy. TEM images of Ag-RGS revealed that the silver nanoparticles were decorated on the surface of the graphene sheet. The presence of phenolic groups and silver nanoparticles on the surface of Ag-RGS showed synergistic effect on antibacterial activity against Escherichia coli and Staphylococcus aureus. This feature of the Ag-RGS nanocomposite showed that it can be a promising candidate in broad range of antibiotics.  相似文献   

12.

The present investigation showed the green synthesis of silver nanoparticles (AgNPs) using Ficus benghalensis (F. benghalensis) leaf extract. UV–Vis spectra of the biofabricated AgNPs displayed its maximum peak of absorption at 461 nm. High resolution-transmission electron microscopy images displayed the shape of AgNPs as spherical with an average diameter of 35 nm size. The analysis of X-ray diffraction confirmed the presence of crystalline AgNPs. The analysis of Fourier-transform infrared spectroscopy confirmed the existence of bioconstituents such as terpenoids, phenolics and flavonoids, which functions as bio-reducing agents. When compared with F. benghalensis extract, AgNPs displayed the considerably greater bioactivities. The exceptional antimicrobial functionalities of AgNPs against both the gram positive and gram negative bacteria makes them appropriate candidates for the production of antibiotics against the species that are resistant to traditional antibiotics. The assay of HDFa cell scratch confirmed that the AgNPs have greater ability of wound healing than the leaf extract of F. benghalensis. Altogether, the obtained results showed the application of synthesized AgNPs in the production of novel drugs that are used for wound healing in nursing care after rectal surgery.

  相似文献   

13.
A silver nanoparticle solution was prepared in one step by mixing AgNO3 and a multi-amino compound (RSD-NH2) solution under ambient condition. RSD-NH2 was in-house synthesized by methacrylate and polyethylene polyamine in methanol, which has abundant amino and imino groups. However, the characterization of silver nanoparticles indicated that these nanoparticles are easy to agglomerate in solution. Therefore, an in situ synthesis method of silver nanoparticles on the silk fabrics was developed. The examined results confirmed that the in situ synthesized silver nanoparticles were evenly distributed on the surface of fibers. The inhibition zone test and the antibacterial rate demonstrated that the finished fabrics have an excellent antibacterial property against Staphylococcus aureus and Escherichia coli. Moreover, the nanosilver-treated silk fabrics were laundered 0, 5, 10, 20, and 50 times and still retained the exceptional antibacterial property. When the treated fabrics were washed 50 times, the antibacterial rate is more than 97.43% for S. aureus and 99.86% for E. coli. The excellent laundering durability may be attributed to the tight binding between silver nanoparticles and silk fibers through the in situ synthesis. This method provides an economic method to enhance the antibacterial capability of silk fabrics with good resistance to washings.  相似文献   

14.
Silver nanoparticles (AgNPs) have promising potential in biomedicine, energy science, optics, and health care applications. We synthesized AgNPs using plant, Kalopanax pictus leaf extract. UV-visible spectrophotometric study showed the characteristic peak for AgNPs at wavelength 430 nm. The optical density at 430 nm increased after addition of plant leaf extract, indicating increase in formation of nanoparticles. Comparative time course analyses for AgNP synthesis carried out at different reaction temperatures (20, 60, and 90 °C) revealed higher reaction rate for K. pictus than Magnolia kobus plant leaf extract, which showed highest AgNP synthesis rate in the previous report. Electron microscopy analyses confirmed the presence of well dispersed AgNPs, predominantly with spherical shapes. In transmission electron microscopy, the particle size decreased with increase in temperature. Electron dispersive X-ray spectroscopy analyses indicated that Ag content increased with increase in reaction temperature. Fourier transform-infrared spectroscopy studies revealed capping of bioorganics from plant to the synthesized AgNPs. The antimicrobial activity of the synthesized AgNPs against Escherichia coli increased with increase in reaction temperature. The observations in this study will prove beneficial in approaching rapid synthesis of AgNPs and their antimicrobial application.  相似文献   

15.
纳米银是以纳米技术为基础研制而成的新型抗菌产品,由于量子效应和尺寸效应具有普通银系抗菌剂无法比拟的抗菌效果。本研究以黄芩、丁香、洋浦桃、芳樟4种植物质提取液制备银纳米颗粒,并借助于UV-Vis、TEM以及XRD对产物进行表征,结果表明增加植物质提取液浓度或增大NaOH加入量,均有利于制得粒径较小的银纳米颗粒。SEM图片表明采用浸渍法可将所得纳米银颗粒负载于纯棉织物上,通过考察浸渍时间、温度、浴比对织物上载银量的影响,确定较优的浸渍条件为时间30 h,温度55℃,浴比为1:25。分别考察了银纳米颗粒粒径和植物质种类对所得载银织物抗菌性能的影响,发现负载到织物上的纳米银粒径越小,织物抑菌效果越好;利用本身具有抑菌效果的黄芩、丁香来制备银纳米颗粒,有利于增强所得载银织物的整体抗菌性能;4种植物质中以黄芩制得的载银织物抗菌效果最优,对金黄色葡萄球菌、大肠杆菌等实验菌株均有强烈的抑制作用。  相似文献   

16.
The growing number of drug-resistant pathogenic bacteria poses a global threat to human health. For this reason, the search for ways to enhance the antibacterial activity of existing antibiotics is now an urgent medical task. The aim of this study was to develop novel delivery systems for polymyxins to improve their antimicrobial properties against various infections. For this, hybrid core–shell nanoparticles, consisting of silver core and a poly(glutamic acid) shell capable of polymyxin binding, were developed and carefully investigated. Characterization of the hybrid nanoparticles revealed a hydrodynamic diameter of approximately 100 nm and a negative electrokinetic potential. The nanoparticles demonstrated a lack of cytotoxicity, a low uptake by macrophages, and their own antimicrobial activity. Drug loading and loading efficacy were determined for both polymyxin B and E, and the maximal loaded value with an appropriate size of the delivery systems was 450 µg/mg of nanoparticles. Composite materials based on agarose hydrogel were prepared, containing both the loaded hybrid systems and free antibiotics. The features of polymyxin release from the hybrid nanoparticles and the composite materials were studied, and the mechanisms of release were analyzed using different theoretical models. The antibacterial activity against Pseudomonas aeruginosa was evaluated for both the polymyxin hybrid and the composite delivery systems. All tested samples inhibited bacterial growth. The minimal inhibitory concentrations of the polymyxin B hybrid delivery system demonstrated a synergistic effect when compared with either the antibiotic or the silver nanoparticles alone.  相似文献   

17.
Silver nanoparticles (AgNPs) loaded antibacterial micelles were fabricated utilizing the coordinate interaction between silver ion (Ag+) and methoxy-poly(ethylene glycol)-block-poly(acrylamide-co-acrylonitrile) followed by in situ reduction. This micelle was characterized by X-ray photoelectron spectroscopy, transmission electron microscopy, and dynamic light scattering. The upper critical solution temperature of Ag+-loaded micelles was dependent on Ag+ concentration. The AgNPs were approximately 4 nm in diameter and homogenously distributed in the micelles. The AgNPs-loaded micelle displayed high stability during a one week study and excellent antibacterial activity against gram-negative Escherichia coli and was of acceptable toxicity toward human embryonic hepatocytes.  相似文献   

18.
When single-cell (or suspended) bacteria switch into the biofilm lifestyle, they become less susceptible to antimicrobials, imposing the need for anti-biofilms research. Flavonoids are among the most extensively studied natural compounds with an unprecedented amount of bioactivity claims. Most studies focus on the antibacterial effects against suspended cells; fewer reports have researched their anti-biofilm properties. Here, a high throughput phenotypic platform was utilized to screen for the inhibitory activity of 500 flavonoids, including natural and synthetic derivatives, against Staphylococcus aureus biofilms. Since discrepancies among results from earlier antibacterial studies on flavonoids had been noted, the current study aimed to minimize sources of variations. After the first screen, flavonoids were classified as inactive (443), moderately active (47) or highly active (10). Further, exclusion criteria combining bioactivity and selectivity identified two synthetic flavans as the most promising. The body of data reported here serves three main purposes. First, it offers an improved methodological workflow for anti-biofilm screens of chemical libraries taking into account the (many times ignored) connections between anti-biofilm and antibacterial properties. This is particularly relevant for the study of flavonoids and other natural products. Second, it provides a large and freely available anti-biofilm bioactivity dataset that expands the knowledge on flavonoids and paves the way for future structure-activity relationship studies and structural optimizations. Finally, it identifies two new flavans that can successfully act on biofilms, as well as on suspended bacteria and represent more feasible antibacterial candidates.  相似文献   

19.
Metallic nanoparticles (MeNPs) can be formed in living plants by reduction of the metal ions absorbed as soluble salts. It is very likely that plant metabolism has an important role in MeNP biosynthesis. The in vivo formation of silver nanoparticles (AgNPs) was observed in Brassica juncea, Festuca rubra and Medicago sativa. Plants were grown in Hoagland''s solution for 30 days and then exposed for 24 h to a solution of 1,000 ppm AgNO3. In the leaf extracts of control plants, the concentrations of glucose, fructose, ascorbic acid, citric acid and total polyphenols were determined. Total Ag content in plant fractions was determined by inductively coupled plasma atomic emission spectroscopy. Despite the short exposure time, the Ag uptake and translocation to plant leaves was very high, reaching 6,156 and 2,459 mg kg−1 in B. juncea and F. rubra, respectively. Ultrastructural analysis was performed by transmission electron microscopy (TEM), and AgNPs were detected by TEM X-ray microanalysis. TEM images of plant fractions showed the in vivo formation of AgNPs in the roots, stems and leaves of the plants. In the roots, AgNPs were present in the cortical parenchymal cells, on the cell wall of the xylem vessels and in regions corresponding to the pits. In leaf tissues, AgNPs of different sizes and shapes were located close to the cell wall, as well as in the cytoplasm and within chloroplasts. AgNPs were not observed in the phloem of the three plant species. This is the first report of AgNP synthesis in living plants of F. rubra. The contents of reducing sugars and antioxidant compounds, proposed as being involved in the biosynthesis of AgNPs, were quite different between the species, thus suggesting that it is unlikely that a single substance is responsible for this process.

MSC 2010

92 Biology and other natural sciences; 92Cxx Physiological, cellular and medical topics; 92C80 Plant biology  相似文献   

20.
The antimicrobial activity of silver nanoparticles (AgNPs) against Pseudomonas aeruginosa PA01 planktonic and biofilm bacteria was examined; their activity was compared with that of silver ions. The inactivation of biofilms by AgNPs was greatly influenced by stirring, which caused an increased AgNP biosorption. Although the activity of AgNPs against planktonic cells was ca. 10% that of silver ions, their activity against biofilm cells was comparable to the silver ions’ activity at the same concentration after 90 min under stirring (ca. 3.5 log inactivation). AgNPs inactivated biofilms in a biosorption-dependent manner, whereas this was not the case for silver ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号