共查询到19条相似文献,搜索用时 93 毫秒
1.
提出了一种基于生成式对抗网络(GAN)和自注意力机制(self-attention mechanism)的单目视觉里程计方法,命名为SAGANVO(SAGAN visual odometry).该方法将生成式对抗网络学习框架应用于深度估计和视觉里程计任务中,通过GAN生成逼真的目标帧来准确求解出场景的深度图和6自由度位姿.与此同时,为了提高深度网络对场景细节、边缘轮廓的学习能力,将自注意力机制结合到网络模型中.最后,在公开数据集KITTI上展现了所提出的模型和方法的高质量结果,并与现有方法进行了对比,证明了SAGANVO在深度估计和位姿估计中的性能优于现有的主流方法. 相似文献
2.
3.
在机器学习和数据库等领域,高质量数据集的合成一直以来是一个非常重要且充满挑战性的问题.其中,合成的高质量数据集可用来改善模型,尤其是深度学习模型的训练过程.一个健壮的模型训练过程需要大量已标注的数据集,获取这些数据集的一种方法是通过领域专家的手动标注,这种方法不仅代价大还容易出错,因此由模型自动合成高质量数据集的方法更为合理.近年来,由于计算机视觉领域的飞速发展,已经有不少致力于图像数据集合成的研究,但是这些模型不能直接应用在结构化数据表上,并且据调研,对这类数据的相关研究几乎没有.因此,提出了一个针对结构化数据表的生成模型TableGAN,该模型是生成式对抗网络(generative adversarial network, GAN)家族的一种变体,通过对抗训练的方式提高生成模型的性能.针对结构化数据的特征改变了传统GAN模型的内部结构,包括优化函数等,使其能够生成高质量的结构化数据用于改善模型的训练过程.通过在真实数据集上的大量实验表明了此模型的有效性,即在扩大后的数据集上训练模型的效果有明显提升. 相似文献
4.
基于零和博弈思想的生成式对抗网络(GAN)可通过无监督学习获得数据的分布,并生成较逼真的数据。基于GAN的基础概念及理论框架,研究各类GAN模型及其在特定领域的应用情况,从数据相似性度量、模型框架、训练方法3个方面进行分析,对GAN改进与扩展的相关研究成果进行总结,并从图像合成、风格迁移等应用领域展开讨论,归纳出GAN的优势与不足,同时对其应用前景进行展望。分析结果表明,GAN的学习能力与可塑性强,改进潜力大,应用范围广,但其发展面临的挑战是训练过程不稳定,且缺乏生成数据质量的客观评价标准。 相似文献
5.
6.
在实际应用中, 为分类模型提供大量的人工标签越来越困难, 因此, 近几年基于半监督的图像分类问题获得了越来越多的关注.而大量实验表明, 在生成对抗网络(Generative adversarial network, GANs)的训练过程中, 引入少量的标签数据能获得更好的分类效果, 但在该类模型的框架中并没有考虑用于提取图像特征的结构, 为了进一步利用其模型的学习能力, 本文提出一种新的半监督分类模型.该模型在原生成对抗网络模型中添加了一个编码器结构, 用于直接提取图像特征, 并构造了一种新的半监督训练方式, 获得了突出的分类效果.本模型分别在标准的手写体识别数据库MNIST、街牌号数据库SVHN和自然图像数据库CIFAR-10上完成了数值实验, 并与其他半监督模型进行了对比, 结果表明本文所提模型在使用少量带标数据情况下得到了更高的分类精度. 相似文献
7.
生成式对抗网络(GAN)现已成为深度学习领域热门的研究方向,其独特的对抗性思想来源于博弈论中的二人零和博弈,如何解决GAN训练不稳定、生成样本质量差、评价体系不够健全、可解释性差等问题是目前GAN研究的重点和难点.调研了生成式对抗网络的研究背景和发展趋势.首先阐述了生成式对抗网络的基本思想和算法实现,分析了GAN的优势... 相似文献
8.
对于人脸识别验证的研究带动了执法机构和数字娱乐行业将素描转化为真实人脸图像的需求和兴趣.到目前为止,由于网络训练阶段缺乏配对的数据,加上素描与真实照片之间存在着明显的模态差异,现有的方法仍然存在着不可解决的局限性.利用跨域语义一致性损失使输入和输出保持相同的语义信息,并用感知损失替换像素级的循环一致性损失以生成高分辨率... 相似文献
9.
基于生成式对抗网络的通用性对抗扰动生成方法 总被引:1,自引:0,他引:1
深度神经网络在图像分类应用中具有很高的准确率,然而,当在原始图像中添加微小的对抗扰动后,深度神经网络的分类准确率会显著下降。研究表明,对于一个分类器和数据集存在一种通用性对抗扰动,其可对大部分原始图像产生攻击效果。文章设计了一种通过生成式对抗网络来制作通用性对抗扰动的方法。通过生成式对抗网络的训练,生成器可制作出通用性对抗扰动,将该扰动添加到原始图像中制作对抗样本,从而达到攻击的目的。文章在CIFAR-10数据集上进行了无目标攻击、目标攻击和迁移性攻击实验。实验表明,生成式对抗网络生成的通用性对抗扰动可在较低范数约束下达到89%的攻击成功率,且利用训练后的生成器可在短时间内制作出大量的对抗样本,利于深度神经网络的鲁棒性研究。 相似文献
10.
对抗样本能够作为训练数据辅助提高模型的表达能力,还能够评估深度学习模型的稳健性.然而,通过在一个小的矩阵范数内扰乱原始数据点的生成方式,使得对抗样本的规模受限于原始数据.为了更高效地获得任意数量的对抗样本,探索一种不受原始数据限制的对抗样本生成方式具有重要意义.鉴于此,提出一种基于生成对抗网络的对抗样本生成模型(multiple attack generative adversarial networks, M-AttGAN).首先,将模型设计为同时训练2组生成对抗网络,分别对原始数据样本分布和模型潜在空间下的扰动分布进行建模;然后,训练完成的M-AttGAN能够不受限制地高效生成带有扰动的对抗样本,为对抗训练和提高深度神经网络的稳健性提供更多可能性;最后,通过MNIST和CIFAT-10数据集上的多组实验,验证利用生成对抗网络对数据分布良好的学习能力进行对抗样本生成是可行的.实验结果表明,相较于常规攻击方法,M-AttGAN不仅能够脱离原始数据的限制生成高质量的对抗样本,而且样本具备良好的攻击性和攻击迁移能力. 相似文献
11.
由于汉字拥有大量的字符,大多数对汉字的研究主要集中在汉字的识别和分类问题上,对于生成汉字的研究较少,尤其是在没有大量配对的汉字数据集的情况下.该模型使用内容和风格样式都不匹配的汉字数据集,将生成个性化手写汉字的过程公式化为一个从现有的标准印刷字体到个性化手写汉字样式映射的问题.在基于无监督学习的图像翻译模型的基础上,利... 相似文献
12.
目前大多数的图像风格迁移方法属于有监督学习,训练数据需要成对出现,并且在处理图像背景时,现有的方法过于繁琐。针对这些问题,提出了一种基于图像蒙板的无监督图像风格迁移方法。在实验中,采用了基于循环一致性的CycleGAN架构,并使用Inception-ResNet结构设计了一个全新的具有内置图像蒙板的生成式模型,最后通过无监督学习将图像的背景与学习到的抽象特征进行自动重组。实验表明,新方法有效地对图像背景和抽象特征进行自动分离与重组,同时解决了特征学习过程中的区域干扰问题,获得了可观的视觉效果。 相似文献
13.
针对传统机器学习方法在处理不平衡的海量高维数据时罕见攻击类检测率低的问题,提出了一种基于深度学习的随机森林算法的入侵检测模型,为了避免传统的随机森林面对高维数据和不平衡数据时分类精度低、稳定性差和对罕见攻击类检测率低的问题,引入生成式对抗网络(GAN)和栈式降噪自编码器(SDAE)对随机森林算法(RF)进行改进。将罕见攻击类数据集输入GAN神经网络中,生成新的攻击类样本,改善网络入侵数据在样本集中不均衡分布的情况,通过堆叠深层的SDAE逐层抽取网络数据的分布规则,并结合各个编码层的系数惩罚和重构误差,来确定高维数据中与入侵行为相关的特征,基于降维后的特征数据构建森林决策树。采用UNSW-NB15数据集的实验结果表明,与SVM、KNN、CNN、LSTM、DBN方法相比,GAN-SDAE-RF整体检测准确率平均提高了9.39%、误报率和漏报率平均降低了9%和15.24%以及在少数类Analysis、Shellcode、Backdoor、Worms上检测率分别提高了26.8%、27.98%、27.85%、39.97%。 相似文献
14.
随着多媒体技术的发展,诸如黑白照片着色、医学影像渲染和手绘图上色等各种图像着色应用需求逐渐增多.传统着色算法大部分存在着色模式单一、在处理部分数据时着色效果不佳或者依赖人工输入信息等缺点,对此,设计了一种条件生成对抗网络和颜色分布预测模型相结合的图像着色方法.由生成对抗网络生成着色图像,并通过预测模型的预测值来对生成器... 相似文献
15.
16.
基于机器视觉的磁瓦表面缺陷检测研究对于改进磁瓦生产工艺、提升磁瓦生产效率有着重要意义.但在研究过程中,存在磁瓦含缺陷样本收集困难、不同缺陷样本数不均匀、缺陷类型单一等问题.本文提出一种使用高斯混合模型的深度卷积生成对抗网络(Gaussian Mixture Model Deep Convolution Generati... 相似文献
17.
生成对抗网络(GAN)能够生成逼真的图像,已成为生成模型中的一个研究热点。针对生成对抗网络无法有效提取图像局部与全局特征间依赖关系以及各类别间的依赖关系,提出一种用于生成对抗网络的孪生注意力模型(TAGAN)。以孪生注意力机制为驱动,通过模拟局部与全局特征间的依赖关系以及各类别间依赖关系,对真实自然图像建模,创建逼真的非真实图像。孪生注意力机制包含特征注意力模型和通道注意力模型,特征注意力模型通过有选择地聚合特征,学习相似特征间的关联性,通道注意力模型通过整合各通道维度的相关特征,学习各通道的内部依赖关系。在MNIST、CIFAR10和CelebA64数据集上验证了所提出模型的有效性。 相似文献
18.
19.
无监督跨域迁移学习是行人再识别中一个非常重要的任务. 给定一个有标注的源域和一个没有标注的目标域, 无监督跨域迁移的关键点在于尽可能地把源域的知识迁移到目标域. 然而, 目前的跨域迁移方法忽略了域内各视角分布的差异性, 导致迁移效果不好. 针对这个缺陷, 本文提出了一个基于多视角的非对称跨域迁移学习的新问题. 为了实现这种非对称跨域迁移, 提出了一种基于多对多生成对抗网络(Many-to-many generative adversarial network, M2M-GAN)的迁移方法. 该方法嵌入了指定的源域视角标记和目标域视角标记作为引导信息, 并增加了视角分类器用于鉴别不同的视角分布, 从而使模型能自动针对不同的源域视角和目标域视角组合采取不同的迁移方式. 在行人再识别基准数据集Market1501、DukeMTMC-reID和MSMT17上, 实验验证了本文的方法能有效提升迁移效果, 达到更高的无监督跨域行人再识别准确率. 相似文献