共查询到20条相似文献,搜索用时 0 毫秒
1.
针对工程实际中滚动轴承发生故障的类型具有典型性和故障信号具有冲击性,且振动信号的频率成分因外界环境的影响而变得极其复杂的特点,提出了一种基于负熵和无迹卡尔曼滤波的动态贝叶斯小波变换方法。该方法将SE(Squared Envelope) Infogram方法应用到无迹卡尔曼滤波方法(Unscented Kalman Filter, UKF)中,利用SE Infogram确定滤波器参数初值,即中心频率与带宽的初值,结合UKF对中心频率与带宽进行优化,以最优中心频率与带宽对振动信号进行滤波分析,对滤波后的信号进行包络解调分析,实现轴承微弱故障特征的提取。利用负熵指标代替以往研究所用的峭度指标,可以有效消除或削弱高峰值干扰的影响。最后,通过对仿真信号和轮对轴承试验信号对提出的方法进行了验证。结果表明,该方法能够有效提取强背景噪声下轴承外圈、内圈故障和滚动体故障,验证了该方法对轴承微弱故障诊断的有效性。 相似文献
2.
《噪声与振动控制》2015,(1)
机械故障的声发射信号中往往掺杂着各种干扰和噪声,为解决这一问题,提出了小波变换、集合经验模态分解(Ensemble Empirical Mode Decomposition,EEMD)和马氏距离相结合的滚动轴承故障诊断方法;首次将马氏距离引入到轴承声发射信号的故障诊断中。该方法首先对故障轴承的声发射信号进行小波去噪处理,再对去噪后的信号进行EEMD分解,将其分解为多个固有模式函数(简称IMF)。其次采用马氏距离的方法消除EEMD分解结果中的虚假分量,提取能够反映轴承故障特征的IMF分量,突出高频共振成分。最后,通过瞬时Teager能量的Fourier频谱识别轴承故障的特征频率。仿真信号和滚动轴承外圈声发射信号的实例分析表明:此方法能很好地去除混杂在轴承声发射信号中的噪声,准确地识别出轴承故障的部位。 相似文献
3.
4.
本文针对发动机滚动轴承故障振动信号的非平稳特征,提出了一种基于小波包变换与神经网络的滚动轴承故障诊断方法。由于滚动轴承发生故障时,加速度振动信号各频带的能量会发生变化,以振动信号小波分解后的能量信息作为特征,以神经网络作为分类器对滚动轴承故障进行识别、诊断。通过对滚动轴承的正常状态、滚珠故障、内圈故障和外圈故障信号的分析,表明以小波包分解为预处理器的神经网络故障诊断方法可以准确、有效地识别滚动轴承的工作状态和故障类型。 相似文献
5.
6.
7.
基于小波包变换的滚动轴承故障诊断方法的研究 总被引:6,自引:9,他引:6
目前基于小波分析的滚动轴承故障诊断方法的研究已经很多,但是这些方法对于强噪声背景下的故障信号特征提取效果并不理想。为此,提出了适用于强噪声背景的自相关及互相关小波包消噪滚动轴承故障诊断方法。该方法首次将相关分析和小波包分解结合:对被测信号进行自相关或互相关处理,之后进行小波包阈值消噪处理,对消噪最大能量系数进行自相关或互相关处理,最后对能量序列进行FFT计算。仿真结果表明,该方法极大地增强了对滚动轴承故障诊断的能力,在强噪声背景下有效地提取出滚动轴承的故障频率。 相似文献
8.
机械噪声故障诊断中小波变换的应用 总被引:6,自引:1,他引:6
本文讨论了小波分析理论在机械噪声故障诊断中的应用。为了识别发动机噪声信号中表征故障的间歇性撞击声,本文构造的一种新型的小波——指数衰减型小波函数,它能有效地识别出间歇性撞击声。本文最后给出了实验结果并与经典高斯型小波分析的结果进行了比较。 相似文献
9.
针对轴承振动的非平稳性特点和频谱成分的混杂性,提出了基于小波的信号自适应阈值降噪法。自适应阈值降噪法首先对信号进行离散正交小波多层分解,对分解后的各层细节系数中模小于某阈值的系数进行处理,然后将处理完的小波系数再进行反变换,重构出经过降噪后的信号。用仿真信号进行降噪处理,结果表明:通过选择合适的小波基和阈值选择规则,可以实现信号的完美降噪;实测轴承振动信号用小波降噪方法进行预处理,提高了信噪比,进一步作频谱分析得到了故障特征信息,为诊断决策提供了依据。 相似文献
10.
11.
针对传统包络谱和峭度图分析技术的缺陷,提出了一种基于双树复小波包峭度图的轴承故障诊断方法。该方法综合利用了双树复小波包变换和峭度图分析技术,克服了原峭度图方法只采用FIR和短时傅立叶变换滤波器的缺点,提高了从强噪声环境中提取瞬态冲击特征的能力。首先利用双树复小波包变换,将振动信号分解成不同频带的分量,然后计算各小波分量的谱峭度,再利用谱峭度的滤波器作用,计算最大峭度值对应分量信号的包络谱,根据包络谱就可识别齿轮箱轴承的故障部位和类型。齿轮箱轴承故障振动实验信号的研究结果表明:该方法不仅提高了信噪比和频带选择的正确性,而且能有效地识别轴承的故障。 相似文献
12.
13.
轴承弱故障振动信号中的瞬态成分极易被强背景噪声湮没而无法及时检测,结合稀疏表示原理提出一种基于小波基的稀疏信号特征提取方法,从而实现信号中瞬态特征成分的提取。通过构建原始信号瞬态成分稀疏表示模型,对原始信号采用相关滤波法获取最优小波原子,并构建最优冗余小波基底,实现小波基与信号故障特征的最优匹配;设计二次严格凸函数并运用MM(Majorization Minimization)算法求解模型中的目标函数,将信号中的瞬态冲击成分转化为稀疏表示系数,实现强背景噪声下弱特征的有效提取。仿真信号及轴承微弱故障试验验证了该方法能有效地检测和提取强背景噪声下的微弱瞬态成分。 相似文献
14.
15.
基于连续小波变换的奇异性检测与故障诊断 总被引:29,自引:0,他引:29
小波奇异性检测方法作为一种有效的信号局部奇异程度的定量描述方法,已在许多领域展开应用。针对当前普遍采用的基于二进小波变换的奇异性检测方法的不足,建立了基于连续小波变换的奇异性检测方法,具有更细致的局部奇异性刻画能力。本文将这种方法应用在压缩机气阀的故障诊断中,充分显示了该方法的有效性。 相似文献
16.
17.
18.
19.
小波变换理论及其在机械故障诊断中的应用 总被引:10,自引:1,他引:10
小波变换是一种日益获得广泛应用的信号分析方法,已成为国际上非常活跃的研究领域.它在时域和频域同时具有良好的局域性,能够很好地反映出瞬态信号的特征,为诊断以非稳态信号为特征的机械故障提供了有效的分析手段.本文从应用的角度简述了小波变换的基本理论和算法,并给出了故障诊断的实例,证明了这种方法对故障诊断的有效性. 相似文献
20.
《振动工程学报》2018,(5)
针对滚动轴承故障诊断时频特征自适应提取与智能诊断问题,提出了一种基于卷积神经网络(Convolution Neural Network,CNN)和离散小波变换(Discrete Wavelet Transform,DWT)的滚动轴承故障诊断方法。首先应用离散小波变换将信号时频特征充分展现,构造出时频矩阵;然后再利用卷积神经网络的多层特征提取网络对输入信号进行分级表达,将时频矩阵低层信号特征逐层变换形成抽象的深层特征,以获取原信号时频信息的分布式特征表达。最后在特征输出层后端添加softmax多分类器,利用反向传播(Backpropagation,BP)逐层微调结构参数,建立特征空间到故障空间的映射以生成合适的分类器,从而实现滚动轴承故障诊断。通过对不同故障类型、不同损伤程度以及不同工况下的滚动轴承进行故障诊断实验,结果证明了所提方法的可行性与有效性,并具有较好的泛化能力和稳健性。 相似文献