共查询到20条相似文献,搜索用时 33 毫秒
1.
为了研究线路的非对称性布置对列车和桥梁系统气动特性的影响,开发了一种同步测试车-桥气动力的装置,通过本装置对线路非对称布置的大跨度公铁两用斜拉桥进行了节段模型风洞试验。考虑了下层铁路和下层公路分别为迎风侧的工况,测试了不同车-桥组合下车辆和桥梁各自的气动力,讨论了线路非对称布置、风攻角、双车交会和汽车对车-桥系统气动特性的影响。结果表明:相对下层铁路侧迎风工况,下层公路迎风侧的桥梁升力系数和扭矩系数差别较大,且车辆升力系数也变化较大;桥梁和车辆的阻力系数随风攻角的增加而减小;双车交会时,背风侧车辆阻力系数发生突变;受公铁平层防眩网的作用,汽车对列车气动特性影响相对较小。 相似文献
2.
基于列车测压试验,以平层公铁桥梁和CRH2列车为背景,分析了风屏障对平层公铁桥上列车表面风压分布的影响,研究了有无风屏障时列车表面压力以及气动力的跨向相关性的变化规律。研究结果表明:设置风屏障后,列车迎风面与背风面、顶面和底面风压差随风屏障透风率的减小而减小,使得列车总体侧力和升力减小,风屏障透风率为20%时,列车表面脉动压力分布较均匀,有利于桥上列车运行时的安全与舒适。风屏障的防风效果不会随着风屏障高度的增加一直变好,透风率为40%时,风屏障存在一个最优高度3.5 m。风屏障透风率对列车迎风面以及顶面圆弧过渡段表面风压的影响明显大于高度。设置风屏障后,列车底面和背风面测点压力跨向相关性更好,风屏障的挡风效应增强了这两部分展向流场的一致性,使流体的脱落点更一致。随着跨向间距的增大,气动力的相关性越来越差,风屏障对气动力的跨向相关性较无风屏障时弱,设置风屏障时跨向间距超过5倍列车高,气动力完全不相关。 相似文献
3.
为研究三主桁断面车-桥组合系统的气动特性。以某大跨度斜拉桥为工程背景,采用节段模型风洞试验,通过开发的车-桥气动力同步测试装置对车-桥组合状态下各自的气动力进行测试,研究了线路位置、双车交会间距、风攻角等因素对车-桥系统气动特性的影响,分析紊流来流对车-桥气动特性的影响,并讨论列车气动导纳的特征。结果表明:由于绕流剪切层的影响,靠近迎风侧车辆阻力系数大于其他线路,线路2上列车的升力系数最大;双车交会时,背风侧车辆的阻力系数和升力系数随交会间距的增大而增大;受桁架自身绕流的影响,紊流来流对列车气动力功率谱影响较小;阻力和升力的气动导纳随折减频率呈现先增后减的趋势。 相似文献
4.
为研究多线双层铁路桥梁车辆与桥梁的气动特性,利用三分力分离装置-交叉滑槽系统,对某六线双层大跨铁路斜拉桥进行节段模型风洞试验。测试了不同车桥组合下车辆与桥梁各自的气动力,研究了单列车的位置、双车同层交会、双车上下层共存时车辆和桥梁气动特性的相互影响,并讨论了风攻角对上层车辆气动力的影响。试验结果表明,当车辆位于桥梁断面不同位置时,车辆气动力差异较大;由于上层桥面宽度较大,气流经过桥梁断面前缘分离后,再附着于较靠后的背风侧车辆,导致背风侧车辆的阻力系数更大;双层车辆共存时,当两者同处于迎风侧,气动力有明显的相互影响;风攻角对背风侧车辆的气动力影响显著。 相似文献
5.
基于同步测压技术,以京沪高速铁路典型高架桥和CRH2列车为背景,研究风屏障对典型车桥组合状态下列车的风压分布和各面气动力分布特征的影响,以分析风屏障的气动影响机理,并从流体力学角度进行解释。研究结果表明:风屏障对上游列车气动特性影响较大,下游列车由于处于尾流中,受之影响较小;设置风屏障后,上游列车由于迎风面风压由正变负,使得该面的侧力与背风面相反,故使总体侧力减小,车顶平均风压显著减小,使得车顶升力约增大50%,背风面和车底风压变化较小;风屏障透风率及高度取值需根据具体环境进行优化,并需注意防风效果并不与减小平均风速等同。 相似文献
6.
7.
《振动工程学报》2016,(1)
设置风屏障是提高行车安全的有效措施之一,但防风效果受风屏障参数、周围环境等多种因素影响。基于同步测压方法,结合本征正交分解技术对风压测点进行加密后通过积分获得气动力,以京沪高速铁路典型高架桥和CRH2列车为背景,研究多种风屏障参数对典型车桥组合状态下中间车辆气动力和风压分布的影响。研究结果表明:测压积分可获得与天平测力精度相当的气动力;风屏障对上游列车的防风效果显著,下游列车气动特性则受之影响较小;相对而言,风屏障透风率大小对列车气动特性影响较大,高度影响较小,且二者存在一个最优组合;设置风屏障后,尽管平均气动力会减小,但最大气动力由于特征紊流的影响可能会增大,风屏障参数应通过风洞试验或数值模拟慎重选取。 相似文献
8.
为探究公路风屏障后方流场分布特性及自身风荷载,针对6种不同板形,通过足尺节段模型风洞试验测试了各风屏障后方不同车道处的流场分布及距离地面不同高度处障条的风荷载,在此基础上对比分析屏障孔隙尺寸和开孔形式对其后方流场分布的影响,求得了不同风屏障整体的阻力系数、力矩系数以及风速折减系数。研究结果表明,孔隙尺寸对风屏障后方流场影响较为有限,开孔形式对屏障前方流场影响较为有限,但是对其后方的流场分布影响较为明显。由于受到盖梁的影响,位于最顶部的障条阻力系数较其他位置处障条阻力系数偏低。屏障整体风荷载系数可为日后该类风屏障设计提供一定的参考。 相似文献
9.
通过刚性模型测压风洞试验在均匀流场中测试了标准方柱和圆角率分别为0.1,0.2,0.3和0.4的圆角方柱在12万雷诺数及0°~45°风向角内的表面风压,进而分析了风向角以及圆角率对模型气动特性的影响规律。结果表明:随着风向角的增大,圆角方柱的平均阻力系数均先减小后增大,最后趋于平稳,平均升力系数则先增大后减小,最后趋于稳定,圆角方柱平均升/阻力系数取得最大(或最小)值的风向角小于标准方柱,其中:圆角率为0.1的圆角方柱在7.5°附近,圆角率为0.2,0.3,和0.4的圆角方柱则在5°附近;当风向角小于10°时,圆角方柱的脉动升力系数随风向角增大先减小后增大且远小于标准方柱;当风向角大于10°时,圆角方柱的脉动升力系数随风向角增大变化较小且略大于标准方柱;圆角方柱的斯特劳哈尔数随风向角的增大均呈现出先增大后减小的趋势,最大值随圆角率的增大逐渐增大。 相似文献
10.
为研究多线双层铁路桥梁车辆与桥梁的气动特性,利用三分力分离装置-交叉滑槽系统,对某六线双层大跨铁路斜拉桥进行节段模型风洞试验。测试了不同车桥组合下车辆与桥梁各自的气动力,研究了单列车的位置、双车同层交会、双车上下层共存时车辆和桥梁气动特性的相互影响,并讨论了风攻角对上层车辆气动力的影响。试验结果表明,当车辆位于桥梁断面不同位置时,车辆气动力差异较大;由于上层桥面宽度较大,气流经过桥梁断面前缘分离后,再附着于较靠后的背风侧车辆,导致背风侧车辆的阻力系数更大;双层车辆共存时,当两者同处于迎风侧,气动力有明显的相互影响;风攻角对背风侧车辆的气动力影响显著。 相似文献
11.
12.
明确斜拉索的气动特性对于保证桥梁的安全性和经济性具有重要意义,服役期的斜拉索在各种作用下,截面可能由标准圆变为非标准圆,因此,有必要对非标准圆斜拉索的风致振动特性进行研究。以长短轴之比分别为1.05、1.10、1.15的椭圆柱体模型为研究对象,利用风洞测振试验,研究非标准圆斜拉索的风致振动时频特征。结果表明:非标准圆斜拉索风致振动时程整体上可以分为两类,一类是类似于简谐运动的非常稳定的周期性运动,另一类则随时间变化不特别稳定,一段时间内振幅较小,另一时间段内振幅则较大;在绝大多数工况下,风致振动为第一类振动,振幅较大且非常稳定;模型的振动频率基本上在自振频率附近波动,当模型出现大幅振动时,振动频率开始偏离自振频率,这是因为大幅风致振动可能使得模型系统产生了气动负刚度或气动质量,进而使得振动频率降低。 相似文献
13.
几何非线性是大跨度桥梁结构的主要非线性影响因素之一,对桥梁结构及桥上列车行车安全性的影响不容忽视。该文以世界首座跨度超1 km的公铁两用斜拉桥——沪苏通长江大桥为工程背景,基于桥址区复杂风场实测,采用谱表示法提取实际风场特征,模拟全桥三维风速场,建立了考虑复杂非线性空间特性的风荷载模型,考虑垂度效应、梁柱效应和大位移效应等几何非线性因素,建立了桥梁非线性计算子模型,采用全过程迭代法计算考虑非线性因素的风-车-桥耦合振动响应,并给出行车安全性分析。结果表明:考虑非线性因素工况下,桥梁与车辆的动力响应均有一定程度的增大,且车辆动力响应的低频成分显著增加;大位移效应对结构响应影响较大,梁柱效应影响较小;忽略非线性因素影响,可能导致响应分析偏小,评估偏不安全;当车速为200 km/h,瞬时风速超过35 m/s,或当瞬时风速为30 m/s,车速超过210 km/h时,车辆轮重减载率指标超出安全阈值,行车安全性受到威胁。沪苏通大桥的非线性风-车-桥耦合振动分析具有重要的科学研究意义,并对保障桥梁结构和列车运行安全具有重要的工程指导作用。 相似文献
14.
超大型冷却塔风荷载特性风洞试验研究 总被引:9,自引:3,他引:9
对某超大型冷却塔进行同步测压风洞试验获得内、外表面的脉动风压分布。在外压测试中,改变外表面粗糙度和调整风速等措施,较好地实现了冷却塔大缩尺比模型对表面绕流高雷诺数效应的模拟;采用热线风速仪对冷却塔尾流进行测试,验证了由冷却塔整体气动力时程频谱函数确定涡脱频率方法的合理性;分析了环向断面阻力系数沿塔高的分布规律,在考虑相关性的基础上建议了冷却塔环向外表面的风压极值分布拟合曲线。在内压测试中,比较多种填料层透风率对于内压影响的基础上,采用相关性分析方法确定了内压极值分布规律。 相似文献
15.
16.
受电弓是高速列车顶部最主要的气动噪声源,合理的导流罩设计是降低受电弓气动噪声的重要方法。通过声学风洞试验的方法,研究缩比模型导流罩对高速列车受电弓气动噪声的影响,采用远场麦克风及声阵列,给出了风速范围为200~250 km·h~(-1)时的升弓、降弓状态下,受电弓和加装导流罩的远场气动噪声频谱、主要噪声源位置、强度和对应频带范围。研究表明,受电弓气动噪声为宽频带噪声,中频噪声源位于受电弓区域后部近车体位置,中高频、高频噪声源对应弓头和支座区域;升弓状态下,导流罩增大了弓头区域的气动噪声能量,在降弓状态下,导流罩减小了弓头和支座的噪声水平。 相似文献
17.
18.
为了明确孔隙式风屏障缩尺模型的模拟方法,针对铁路桥上设置透风率为30%、高度为2.05m风屏障情况,通过风洞试验测试了不同开孔形式风屏障作用下车辆的气动力系数,分析了风屏障的孔径和开孔形状对车辆气动特性的影响,讨论了圆孔形风屏障与纵条形风屏障的相似性。结果表明,在1∶20的缩尺模型中,风屏障的孔径可取8mm~12mm;透风率相同时,风屏障的开孔形式对迎风侧车辆有一定的影响;纵条形风屏障的间隙数不低于10个时,与设置8mm圆孔形风屏障时的车辆气动特性较为接近,结果可为风屏障的缩尺模型风洞试验和数值模拟提供参考。 相似文献
19.
基于风-车-桥系统动力分析模型,分析了风屏障对车桥系统气动效应及桥上高速行驶车辆运行安全性的影响。以新建兰新铁路百里风区跨度16 m简支槽形梁为工程背景,通过风洞试验测试了有、无风屏障时车辆、桥梁的三分力系数,然后对强侧风作用下车辆通过桥梁时的动力响应进行了数值模拟,综合分析得到了保证列车在桥上运行安全的风速-车速阈值曲线。结果表明,对未设置风屏障的桥梁,当风速超过15 m/s即应限速行驶;而设置风屏障后,桥上车辆的运行安全性指标得到了极大地改善,即使风速达到40 m/s,列车仍可以260 km/h的速度安全运行。 相似文献
20.
为了研究桥梁结构在车辆和冰荷载共同作用下的振动反应,提出了冰-车-桥系统耦合动力分析框架。在该框架中,每辆车都被视为一个多自由度的运动系统,桥梁结构采用有限元方法进行建模,利用罚函数定义了车轮与桥面之间的接触关系,实现了各子系统之间的接触与交互作用。基于自激冰力模型得到了依赖于冰与结构相对速度的桥梁结构自激冰力,构建了冰-车-桥系统的耦合动力方程,进而开展了冰-车-桥系统耦合振动分析及行车安全评估。研究结果表明:桥梁竖向振动反应随车速的增加而增大,桥梁横向振动反应则受到了冰荷载的控制;车辆的竖向反应主要依赖于车-桥之间的相互作用力,车辆的横向反应则受冰与桥梁之间相互作用力的主导,车辆与桥梁的交互作用受到了车速和冰速的双重影响;快冰速会增大车辆的横向接触力,降低车辆的最小侧滑抗力,不利于行车安全;冰荷载作用下桥上车辆的前轴车轮比后轴车轮更容易发生侧滑;所提出的冰-车-桥系统耦合动力分析框架可为冰荷载作用下跨海桥梁的行车安全评估提供参考。 相似文献